Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Plant derived and synthetical antihypoxic agents in cardiovascular diseases: Mechanisms, key pathways and therapeutic potential

DOI
https://doi.org/10.14719/pst.7810
Submitted
19 February 2025
Published
26-11-2025

Abstract

Antihypoxic drugs are vital for protecting cells from oxygen deprivation in ischemia, stroke and heart failure. Despite their clinical potential, a unified understanding of their mechanisms and optimization strategies remains limited. This review addresses this gap by exploring how these agents interact with mitochondrial and cardiovascular ion channels to preserve cellular viability under hypoxic stress. We focus on their modulation of mitochondrial permeability transition pores (mPTP), ATP-sensitive potassium (K-ATP) channels and calcium flux through L-type and R-type channels, which are central to maintaining mitochondrial integrity and vascular function. Additionally, we examine how these compounds regulate hypoxia-inducible factor 1-alpha (HIF-1α), promote efficient electron transport and sustain redox homeostasis. Key strategies for enhancing therapeutic efficacy such as increasing lipophilicity, introducing conjugated π-systems and modifying functional groups are discussed in relation to membrane permeability and intracellular delivery. Particular emphasis is placed on the physicochemical properties that influence bilayer penetration and target specificity. Overall, this review highlights the structural and functional features that underlie the effectiveness of antihypoxic agents and provides insight into their optimization for improved clinical performance in hypoxia-related pathologies.

References

  1. 1. IZOGL Abdullaev, UG Gayibov, SZ Omonturdiev et al. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets. J. Biomed. Res 2025; 39(3):254.https://doi.org/10.7555/JBR.38.20240387.
  2. 2. Sayidaliyeva R, Kadirova S, Zaynabiddinov A, et al. A-51 as A Natural Calcium Channel Blocker: An Integrative Study Targeting Hypertension. TiS, 2025; 22(11), 10760. https://doi.org/10.48048/tis.2025.10760
  3. 3. Kierans SJ, Taylor CT. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. J Physiol. 2021. https://doi.org/10.1113/JP280572
  4. 4. Yfantis A, Mylonis I, Chachami G, et al. Transcriptional response to hypoxia: the role of HIF-1-associated co-regulators. Cells. 2023. https://doi.org/10.3390/cells12050798
  5. 5. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol Cell Biol. 2003. https://doi.org/10.1128/MCB.23.24.9361-9374.2003
  6. 6. Hale SL, Kloner RA. Ion channels and their therapeutic modulation in myocardial ischemia/reperfusion injury. Cardiovasc Res. 2010.
  7. 7. Tataranni T, Agriesti F, Pacelli C, et al. Dichloroacetate affects mitochondrial function and stemness-associated properties in pancreatic cancer cell lines. Cells. 2019. https://doi.org/10.3390/cells8050478
  8. 8. Zhang Q, Yan Q, Yang H, Wei W. Oxygen sensing and adaptability won the 2019 Nobel Prize in Physiology or Medicine. Genes Dis. 2019. https://doi.org/10.1016/j.gendis.2019.10.006
  9. 9. Mäkinen S, Sree S, Ala-Nisula T, et al. Activation of the hypoxia-inducible factor pathway by roxadustat improves glucose metabolism in human primary myotubes from men. Diabetologia. 2024. https://doi.org/10.1007/s00125-024-06185-6
  10. 10. Luo Z, Zheng W, Tang L, et al. Hypoxia-inducible factor-1 (HIF-1) inhibitors in cancer therapy: a patent review. Expert Opin Ther Pat. 2018.
  11. 11. Zaripova MR, Gayibova SN, Makhmudov RR, et al. Characterization of Rhodiola heterodonta (Crassulaceae): phytocomposition, antioxidant and antihyperglycemic activities. Prev Nutr Food Sci. 2024
  12. 12. Abdurazakova I, Zaynabiddinov A, Abdullaev I, Makhmudov L, Gayibov U, Omonturdiev S, et al. Pharmacological evaluation of F45 on the cardiovascular system using in vitro, in vivo models and molecular dockings. Trends in Sciences. 2025;22(12):10924. https://doi.org/10.48048/tis.2025.10924
  13. 13. Gayibov UG, Komilov EJ, Rakhimov RN, et al. Influence of new polyphenol compound from Euphorbia plant on mitochondrial function. J Microbiol Biotechnol Food Sci. 2019. https://doi.org/10.15414/jmbfs.2019.8.4.1021-1025
  14. 14. Zhao Y, Sun X. Cardioprotective roles of mitochondrial K-ATP channels in ischemia/reperfusion injury. J Cardiovasc Pharmacol. 2019.
  15. 15. Gaibullayeva O, Islomov A, Abdugafurova D, Elmurodov B, Mirsalixov B, Mahmudov L, et al. Inula helenium L. root extract in sunflower oil: determination of its content of water-soluble vitamins and immunity-promoting effect. Biomed Pharmacol J. 2024. https://doi.org/10.13005/bpj/3062
  16. 16. McCarty MF, O'Keefe JH, DiNicolantonio JJ. Pentoxifylline for vascular health: a brief review of the literature. Open Heart. 2016. https://doi.org/10.1136/openhrt-2015-000365
  17. 17. Pozilov MK, Gayibov UG, Asrarov MI, et al. Physiological alterations of mitochondria under diabetes condition and its correction by polyphenol gossitan. J Microbiol Biotechnol Food Sci. 2022. https://doi.org/10.55251/jmbfs.2224
  18. 18. AG Vakhobjonovna, KE Jurayevich, AIZ Ogli, et al. Tannins as modulators in the prevention of mitochondrial dysfunction. Trends in Sciences 2025; 22(8). https://doi.org/10.48048/tis.2025.10436
  19. 19. Sayidaliyeva R, Kadirova S, Zaynabiddinov A, et al. A-51 as A Natural Calcium Channel Blocker: An Integrative Study Targeting Hypertension. TiS, 2025; 22(11). https://doi.org/10.48048/tis.2025.1076
  20. 20. Li X, Zou Y, Xing J, Fu YY, Wang KY, Wan PZ, et al. Pretreatment with roxadustat (FG-4592) attenuates folic acid-induced kidney injury through antiferroptosis via Akt/GSK-3β/Nrf2 pathway. Med Cell Longev. 2020. https://doi.org/10.1155/2020/6286984
  21. 21. Aubertin M. Glycolysis and hypoxia: therapeutic strategies in hypoxic tissues. Trends Mol Med. 2022.
  22. 22. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012. https://doi.org/10.1016/j.cell.2012.01.021
  23. 23. Chandel NS. Mitochondrial regulation of oxygen sensing and hypoxia-induced cell death. Mol Cell Biol. 2010.
  24. 24. Liu L, Pi J. Regulation of Nrf2 antioxidant signaling by hypoxia-inducible factors: cross talk in ischemic injury. Antioxid Redox Signal. 2018.
  25. 25. Poloznikov AA, Nikulin SV. Structure-activity relationships and transcriptomic analysis of hypoxia-inducible factor prolyl hydroxylase inhibitors. Antioxidants. 2022. https://doi.org/10.3390/antiox11020220
  26. 26. Koivunen P, Kietzmann T. Hypoxia-inducible factor prolyl 4-hydroxylases and metabolism. Trends Mol Med. 2018. https://doi.org/10.1016/j.molmed.2018.10.004
  27. 27. Aripov TF, Gayibov UG, Gayibova SN, et al. Antiradical and antioxidant activity of the preparation rutan from sumac Rhus coriaria L. J Theor Clin Med. 2023.
  28. 28. M Zaripova, I Abdullaev, A Bogbekov, et al. In vitro and in silico studies of Gnaphalium U. extract: Inhibition of α-amylase and α-glucosidase as a potential strategy for metabolic syndrome regulation. TiS, 2025; 22(8). https://doi.org/10.48048/tis.2025.10098
  29. 29. Poloznikov AA, Nikulin SV. Structure-activity relationships and transcriptomic analysis of hypoxia-inducible factor prolyl hydroxylase inhibitors. Antioxidants. 2022. https://doi.org/10.3390/antiox11020220
  30. 30. Koivunen P, Kietzmann T. Hypoxia-inducible factor prolyl 4-hydroxylases and metabolism. Trends Mol Med. 2018. https://doi.org/10.1016/j.molmed.2018.10.004
  31. 31. Ivanova V, Rodriguez M. Metabolic efficiency and hypoxia: therapeutic implications. Biochim Biophys Acta Bioenerg. 2020;1861(5):487-94.
  32. 32. Abdullaev AA, Inamjanov DR, Abduazimova DS. Silybum marianum’s impact on physiological alterations and oxidative stress in diabetic rats. Biomed Pharmacol J. 2024;17(2):112-20. https://doi.org/10.13005/bpj/2942
  33. 33. Gaibullayeva O, Islomov A, Abdugafurova D, et al. Inula helenium L. root extract in sunflower oil: determination of its content of water-soluble vitamins and immunity-promoting effect. Biomed Pharmacol J. 2024;17(4):845-52. https://doi.org/10.13005/bpj/3062
  34. 34. Khasanov A, Abdullaev I, Kadirova S, et al. N-2 Polyphenol Targets Vascular Calcium Channels to Exert Antihypertensive Effects: In Vitro and In Vivo Evaluation. TiS, 2025;22(12). https://doi.org/10.48048/tis.2026.10782
  35. 35. Muratova DK, Ergashev NA, Asrarov MI, Pozilov MK, Berdiyeva XY. Comparative analysis of the effects of the diterpene alkaloid napelline and its derivative on the MitoK+ ATP channel and mPTP in rat liver and heart mitochondria. Trends in Sciences. 2025;22(12):10483. https://doi.org/10.48048/tis.2025.10483
  36. 36. Zoirovich OS, Ugli AI, Raxmatillayevich ID. The effect of Ajuga turkestanica on the rat aortic smooth muscle ion channels. Biomed Pharmacol J. 2024;17(2):210-6. https://doi.org/10.13005/bpj/2935
  37. 37. Inomjonov D, Abdullaev I, Omonturdiev S, et al. In vitro and in vivo studies of Crataegus and Inula helenium extracts: their effects on rat blood pressure. Trends Sci. 2025;22(3):9158. https://doi.org/10.48048/tis.2025.9158
  38. 38. Abdullaev A, Abdullaev I, Bogbekov A, Gayibov U, et al. Antioxidant potential of Rhodiola heterodonta extract: activation of Nrf2 pathway via integrative in vivo and in silico studies. Trends Sci. 2025;22(5):9521. https://doi.org/10.48048/tis.2025.9521
  39. 39. Aripov TF, Gayibov UG, et al. Antiradical and antioxidant activity of the preparation rutan from sumac Rhus coriaria L. J Theor Clin Med. 2023;4:164-70.
  40. 40. Ergashev N, Sayfieva K, Makhmudov R, Asrarov M. Effect of polyphenols isolated from Plantago major L. and Plantago lanceolata L. on mitochondrial permeability transition pore in rat liver. Trends in Sciences. 2024;21(7):7661. https://doi.org/10.48048/tis.2024.7661
  41. 41. Muratova DKh, Ergashev NA, Shkinev AV, Asrarov MI, Kurbanov UKh. Effect of songorine on the activity of ATP-dependent K⁺ channels and the state of megapore in rat liver mitochondria. Eksperimental'naya i Klinicheskaya Farmakologiya. 2021;84(4):12-15.
  42. 42. Gayibov UG, Komilov EJ, Rakhimov RN, et al. Influence of new polyphenol compound from Euphorbia plant on mitochondrial function. J Microbiol Biotechnol Food Sci. 2019;8(4):1021-5. https://doi.org/10.15414/jmbfs.2019.8.4.1021-1025
  43. 43. Umidakhon Y, Erkin B, Ulugbek G, et al. Correction of the mitochondrial NADH oxidase activity, peroxidation and phospholipid metabolism by haplogenin-7-glucoside in hypoxia and ischemia. Trends Sci. 2022;19(21):6260. https://doi.org/10.48048/tis.2022.6260
  44. 44. Pozilov MK, Gayibov UG, Asrarov MI, et al. Physiological alterations of mitochondria under diabetes condition and its correction by polyphenol gossitan. J Microbiol Biotechnol Food Sci. 2022;12(2):e2224. https://doi.org/10.55251/jmbfs.2224
  45. 45. Shakiryanova Z, Khegay R, Gayibov U, et al. Isolation and study of a bioactive extract enriched with anthocyanin from red grape pomace (Vitis vinifera, Cabernet Sauvignon). Agron Res. 2023;21(3):1293-303.
  46. 46. Gayibov UG, Gayibova SN, Pozilov MK, et al. Influence of quercetin and dihydroquercetin on some functional parameters of rat liver mitochondria. J Microbiol Biotechnol Food Sci. 2021;11(1):1-7. https://doi.org/10.15414/jmbfs.2924
  47. 47. S Sodiqova, S Kadirova, A Zaynabiddinov, et al. Channelopathy activity of a-41(propyl ester of gallic acid): Experimental and computational study of antihypertensive activity. TiS 2025; 22(9). https://doi.org/10.48048/tis.2025.10496
  48. 48. Sekowski S, Bitiucki M, Ionov M, et al. Influence of valoneoyl groups on the interactions between Euphorbia tannins and human serum albumin. J Luminescence. 2018;194:170-8. https://doi.org/10.1016/j.jlumin.2017.10.033
  49. 49. Rakhimov RN, Qodirova ShO, Abdulladjanova NG, et al. Elucidation of structures of new ellagitannins from plants of Euphorbiaceae. J Crit Rev. 2020;7(3):431-7. https://doi.org/10.31838/jcr.07.03.81
  50. 50. Khoshimov NN, Kozokov IB, Dedaboiev JI, et al. Effect of polyphenols on changes in the hemostatic system of blood plasma in healthy and model rats with Alzheimer’s disease. Trends Sci. 2024;21(9):8081. https://doi.org/10.48048/tis.2024.8081
  51. 51. Soliyev NN, Abdullayeva GT, Asrarov MI, et al. Correction of mPTP dysfunction by some polyphenol extracts. Res J Pharm Technol. 2025;18(4):455-62. https://doi.org/10.52711/0974-360X.2025.00261
  52. 52. Ergashev N, Sayfieva K, Asrarov M, et al. Effect of polyphenols isolated from Plantago major L. and Plantago lanceolata L. on mitochondrial permeability transition pore in rat liver. Trends Sci. 2024;21(7):7661. https://doi.org/10.48048/tis.2024.7661
  53. 53. Kuchkarova LS, Kayumov KYO, Ergashev NA, et al. Effect of quercetin on the intestinal carbohydrases activity in the offspring of the lead-intoxicated mother. J Nat Remedies. 2024;24(2):391-6. https://doi.org/10.18311/jnr/2024/32682
  54. 54. Muratova DKh, Ergashev NA, Asrarov MI. Effect of talatisamine and its derivate 14-O-benzoyltalatisamine on functional state of rat liver and heart mitochondria. Biomed Pharmacol J. 2023;16(4):2333-43. https://doi.org/10.13005/bpj/2808
  55. 55. Khaydar KP, Malika IK, Nurali EA. Pathological processes of the oral mucosa in chronic recurrent aphthous stomatitis on the background of gastro-duodenal diseases. Vestn Sovrem Klin Med. 2023;16:29-36. https://doi.org/10.20969/VSKM.2023.16(suppl.2).29-36
  56. 56. Muratova DKh, Ergashev NA, Asrarov MI, et al. Effects of diterpene alkaloids on lipid peroxidation in mitochondria. Nova Biotechnol Chim. 2021;20(2):e850. https://doi.org/10.36547/nbc.850
  57. 57. Gayibov UG, Gayibova SN, Aripov TF, et al. Influence of quercetin and dihydroquercetin on some functional parameters of rat liver mitochondria. J Microbiol Biotechnol Food Sci. 2021;11(1):1-7. https://doi.org/10.15414/jmbfs.2924
  58. 58. Muratova DKh, Ergashev NA, Shkinev AV, et al. Effect of songorine on the activity of ATP-dependent K+ channels and the state of megapore in rat liver mitochondria. Eksper Klin Farmakol. 2021;84(4):12-5.
  59. 59. Raimova KV, Abdulladzhanova NG, Toshpulatov FN, et al. Study of the flavonoid composition and biological activity of hawthorn's leaves Crataegus pontica. Khim Rastit Syr’ya. 2021;(3):201-9. https://doi.org/10.14258/jcprm.2021038023
  60. 60. Ishimov UJ, Abdullayeva GT, Ziyavitdinov JF, et al. The effects of isolated fractions of red pepper Capsicum annuum L. on the mitochondrial permeability transition pore and lipid peroxidation. J Microbiol Biotechnol Food Sci. 2016;5(3):259-62. https://doi.org/10.15414/jmbfs.2015/16.5.3.259-262
  61. 61. Ergashev NA, Kuchkarova LS. Sexual specificity of change of pancreatic alpha-amylase activity in rats in cadmium intoxication. Ross Fiziol Zh IM Sechenova. 2011;97(5):525-31.
  62. 62. Sadykov BA, Kuchkarova LS, Ermatova SU, et al. Digestive enzyme activity in offspring rats fed under lactation by a ration contaminated by heavy metals. Vopr Pitaniia. 2009;78(2):47-50.
  63. 63. Khoshimov NN, Karimov IB, Isroilov DJU, et al. Effect of polyphenols on changes in the hemostatic system of blood plasma in healthy and model rats with Alzheimer’s disease. Trends Sci. 2024;21(9):8081.
  64. 64. Khoshimov NN, Nasirov KE, Mukhtorov AA, et al. Effects of polyphenols on changes in the transport of Ca2+ NMDA-receptors under the influence of L-glutamate. Res J Pharm Technol. 2023;16(3):1205-13. https://doi.org/10.52711/0974-360X.2023.00200
  65. 65. Raimova GM, Khoshimov NN, Nasirov KE, et al. Anti-thrombotic action of sulfated polysaccharides on thrombosis caused by thromboplastin. Res J Pharm Technol. 2021;14(11):6085-8. https://doi.org/10.52711/0974-360X.2021.01057
  66. 66. Khoshimov NN, Raimova GM, Nasirov KE, et al. The effect of sulphated cellulose on system of haemostasis. Res J Pharm Technol. 2021;14(6):3283-9. https://doi.org/10.52711/0974-360X.2021.00571

Downloads

Download data is not yet available.