Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 4 (2025)

Magnetic fields in agriculture: Physiological mechanisms, stress mitigation, and future applications

DOI
https://doi.org/10.14719/pst.7949
Submitted
26 February 2025
Published
31-10-2025 — Updated on 11-11-2025
Versions

Abstract

Magnetic fields (MFs) have emerged as a promising and eco-friendly approach for enhancing plant growth by modulating key physiological and biochemical processes, including ion transport, membrane permeability, enzymatic activity and stress responses. Research suggests that MF treatments can significantly improve seed germination, enhance seedling vigour and increase crop resilience to environmental stressors, such as drought, salinity and extreme temperatures. In addition, exposure to MFs has been reported to accelerate early seedling development, promote root elongation and stimulate photosynthetic efficiency, ultimately leading to increased plant biomass and yield. However, despite the increasing number of studies investigating the potential of MF applications in agriculture, inconsistencies in experimental protocols, exposure conditions and the underlying mechanisms of plant responses to MFs present significant challenges. The lack of standardized methodologies limits the broader adoption of MF technology in large-scale agricultural systems. Standardizing treatment parameters, identifying optimal exposure conditions and elucidating the molecular mechanisms governing plant responses to MFs are critical areas for future investigation. Furthermore, integrating MF technology into precision agriculture and sustainable farming practices could enhance crop productivity while reducing reliance on chemical inputs. By bridging theoretical insights with applied agricultural practices, MFs hold great potential as a novel tool for improving plant performance, stress resilience and overall agricultural sustainability in the face of global climate challenges. This review synthesizes current knowledge on the effects of MFs in plant biology, highlighting both the reported benefits and existing gaps in research.

References

  1. 1. Bellino A, Bisceglia B, Baldantoni D. Effects of weak magnetic fields on plant chemical composition and its ecological implications. Sustainability. 2023;15(5):3918. https://doi.org/10.3390/su15053918
  2. 2. Radhakrishnan R, Ranjitha Kumari BD. Pulsed magnetic field: a contemporary approach offers to enhance plant growth and yield of soybean. Plant Physiol Biochem. 2012;51:139–44. https://doi.org/10.1016/j.plaphy.2011.10.017
  3. 3. Bertea CM, Narayana R, Agliassa C, Rodgers CT, Maffei ME. Geomagnetic field (GMF) and plant evolution: Investigating the effects of GMF reversal on Arabidopsis thaliana development and gene expression. J Vis Exp. 2015;(105):53286. https://doi.org/10.3791/53286
  4. 4. Michalak I, Lewandowska S, Niemczyk K, Detyna J, Bujak H, Arik P, et al. Germination of soybean seeds exposed to the static/alternating magnetic field and algal extract. Engineering in Life Sciences. 2019;19(12):986 99.
  5. 5. Afzal I, Saleem S, Skalicky M, Javed T, Bakhtavar MA, Ul Haq Z, et al. Magnetic field treatments improves sunflower yield by inducing physiological and biochemical modulations in seeds. Molecules. 2021;26(7):2022. https://doi.org/10.3390/molecules26072022
  6. 6. Belyavskaya NA. Biological effects due to weak magnetic field on plants. Adv Space Res. 2004;34(7):1566–74.
  7. 7. Yaycili O, Alikamanoglu S. The effect of magnetic field on Paulownia tissue cultures. Plant Cell Tissue Organ Cult. 2005;83(1):109–14.
  8. 8. Sarraf M, Kataria S, Taimourya H, Santos LO, Menegatti RD, Jain M, et al. Magnetic field (MF) applications in plants: an overview. Plants. 2020;9(9):1139. https://doi.org/10.3390/plants9091139
  9. 9. Maffei ME. Magnetic field effects on plant growth, development and evolution. Front Plant Sci. 2014;5:445. https://doi.org/10.3389/fpls.2014.00445
  10. 10. Bielach A, Hrtyan M, Tognetti VB. Plants under stress: involvement of auxin and cytokinin. International Journal of Molecular Sciences. 2017;18(7):1427. https://doi.org/10.3390/ijms18071427
  11. 11. Grosjean K, Mongrand S, Beney L, Simon Plas F, Gerbeau Pissot P. Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols. J Biol Chem. 2015;290(9):5810–25. https://doi.org/10.1074/jbc.M114.598805
  12. 12. Georgiou CD, Margaritis LH. Oxidative stress and NADPH oxidase: connecting electromagnetic fields, cation channels and biological effects. International Journal of Molecular Sciences. 2021;22(18):10041. https://doi.org/10.3390/ijms221810041
  13. 13. Anand A, Kumari A, Thakur M, Koul A. Hydrogen peroxide signaling integrates with phytohormones during the germination of magnetoprimed tomato seeds. Scientific Reports. 2019;9(1):8814. https://doi.org/10.1038/s41598-019-45102-5
  14. 14. da Silva JA, Dobranszki J. Magnetic fields: how is plant growth and development impacted? Protoplasma. 2016;253(2):231–48. https://doi.org/10.1007/s00709-015-0820-7
  15. 15. Hafeez MB, Zahra N, Ahmad N, Shi Z, Raza A, Wang X, et al. Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields: a review. Plant Biology. 2023;25(1):8–23. https://doi.org/10.1111/plb.13459
  16. 16. Sarimov RM, Serov DA, Gudkov SV. Biological effects of magnetic storms and ELF magnetic fields. Biology. 2023;12(12):1506. https://doi.org/10.3390/biology12121506
  17. 17. Pawełek A, Owusu SA, Cecchetti D, Zielińska A, Wyszkowska J. What evidence exists of crop plants responding to exposure to static magnetic and electromagnetic fields? A systematic map protocol. Environmental Evidence. 2022;11(1):37. https://doi.org/10.1186/s13750-022-00292-w
  18. 18. El Yazied A, Shalaby O, El Gizawy A, Khalf S, El Satar A. Effect of magnetic field on seed germination and transplant growth of tomato. 2011. J Am Sci. 2011;7(12):306–12
  19. 19. Jin Y, Guo W, Hu X, Liu M, Xu X, Hu F, et al. Static magnetic field regulates Arabidopsis root growth via auxin signaling. Scienti Rep. 2019;9(1):14384. https://doi.org/10.1038/s41598-019-50970-y
  20. 20. Jo JW, Yang SW, Lee GW, Kim JH, Kim YJ, Choi Y K, et al. Effect of a directional electromagnetic field on the early stages of plant (Raphanus sativus and Saccharum officinarum) growth. Horticulturae. 2024;10(9):973. https://doi.org/10.3390/horticulturae10090973
  21. 21. Shine MB, Guruprasad KN, Anand A. Enhancement of germination, growth and photosynthesis in soybean by pretreatment of seeds with magnetic field. Bioelectromagnetics. 2011;32(6):474–84. https://doi.org/10.1002/bem.20656
  22. 22. Shine MB, Guruprasad KN, Anand A. Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean. Bioelectromagnetics. 2012;33(5):428–37. https://doi.org/10.1002/bem.21702
  23. 23. Javed N, Ashraf M, Akram NA, Al-Qurainy F. Alleviation of adverse effects of drought stress on growth and some potential physiological attributes in maize (Zea mays L.) by seed electromagnetic treatment. Photochem Photobiol. 2011;87(6):1354–62. https://doi.org/10.1111/j.1751-1097.2011.00990.x
  24. 24. Baghel L, Kataria S, Guruprasad KN. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics. 2016;37(7):455–70. https://doi.org/10.1002/bem.21988
  25. 25. Wang H, Zhang X. Magnetic fields and reactive oxygen species. Int J Mol Sci. 2017;18(10):2175. https://doi.org/10.3390/ijms18102175
  26. 26. Çelik Ö, Büyükuslu N, Atak C, Rzakoulieva A. Effects of magnetic field on activity of superoxide dismutase and catalase in Glycine max (L.) Merr. roots. Pol J Environ Stud. 2009;18(2):175–82.
  27. 27. Machado BR, Silva PGP, Garda-Buffon J, Santos LO. Magnetic fields as inducer of glutathione and peroxidase production by Saccharomyces cerevisiae. Braz J Microbiol. 2022;53(4):1881–91. https://doi.org/10.1007/s42770-022-00836-9
  28. 28. Cakmak T, Dumlupinar R, Erdal S. Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics. 2010;31(2):120–9. https://doi.org/10.1002/bem.20537
  29. 29. Abdel Latef AAH, Dawood MFA, Hassanpour H, Rezayian M, Younes NA. Impact of the static magnetic field on growth, pigments, osmolytes, nitric oxide, hydrogen sulfide, phenylalanine ammonia-lyase activity, antioxidant defense system and yield in lettuce. Biology. 2020;9(7):172. https://doi.org/10.3390/biology9070172
  30. 30. Vashisth A, Nagarajan S. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J Plant Physiol. 2010;167(2):149–56.
  31. 31. Saletnik B, Saletnik A, Slysz E, Zagula G, Bajcar M, Puchalska-Sarna A, et al. The static magnetic field regulates the structure, biochemical activity and gene expression of plants. Molecules. 2022;27(18):5823. https://doi.org/10.3390/molecules27185823
  32. 32. Roth BJ. The role of magnetic forces in biology and medicine. Exp Biol Med. 2011;236(2):132–7. https://doi.org/10.1258/ebm.2010.010236
  33. 33. Joshi S, Nath J, Singh AK, Pareek A, Joshi R. Ion transporters and their regulatory signal transduction mechanisms for salinity tolerance in plants. Physiol Plant. 2022;174(3):e13702.
  34. 34. Cushman JC. Osmoregulation in plants: implications for agriculture. Am Zool. 2001;41(4):758–69.
  35. 35. Griffiths M, York LM. Targeting root ion uptake kinetics to increase plant productivity and nutrient use efficiency. Plant Physiol. 2020;182(4):1854–68. https://doi.org/10.1104/pp.19.01496
  36. 36. Islam M, Maffei ME, Vigani G. The geomagnetic field is a contributing factor for an efficient iron uptake in Arabidopsis thaliana. Front Plant Sci. 2020;11:325. https://doi.org/10.3389/fpls.2020.00325
  37. 37. Fiorillo A, Parmagnani AS, Visconti S, Mannino G, Camoni L, Maffei ME. 14-3-3 proteins and the plasma membrane H(+)-ATPase are involved in maize (Zea mays) magnetic induction. Plants. 2023;12(15):2887. https://doi.org/10.3390/plants12152887
  38. 38. Vashisth A, Joshi DK. Growth characteristics of maize seeds exposed to magnetic field. Bioelectromagnetics. 2017;38(2):151–17. https://doi.org/10.1002/bem.22023
  39. 39. Radhakrishnan R, Kumari BD. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population. Indian J Biochem Biophys. 2013;50(4):312–17.
  40. 40. Furt F, Simon-Plas F, Mongrand S. Lipids of the plant plasma membrane. In: Murphy A, Schulz B, Peer W, editors. The plant plasma membrane. Berlin, Heidelberg: Springer; 2010. p. 3–30.
  41. 41. Novitskaya GV, Molokanov DR, Kocheshkova TK, Novitskii YI. Effect of weak constant magnetic field on the composition and content of lipids in radish seedlings at various temperatures. Russ J Plant Physiol. 2010;57(1):52–61. https://doi.org/10.1134/s1021443710010073
  42. 42. Radhakrishnan R. Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiol Mol Biol Plants. 2019;25(5):1107–19. https://doi.org/10.1007/s12298-019-00699-9
  43. 43. Paponov IA, Fliegmann J, Narayana R, Maffei ME. Differential root and shoot magnetoresponses in Arabidopsis thaliana. Sci Rep. 2021;11(1):9195. https://doi.org/10.1038/s41598-021-88695-6
  44. 44. Tripathy BC, Oelmüller R. Reactive oxygen species generation and signaling in plants. Plant Signal Behav. 2012;7(12):1621–33. https://doi.org/10.4161/psb.22455
  45. 45. Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. J Exp Bot. 2014;65(5):1229–40. https://doi.org/10.1093/jxb/ert375
  46. 46. Bhardwaj J, Anand A, Nagarajan S. Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiol Biochem. 2012;57:67–73. https://doi.org/10.1016/j.plaphy.2012.05.008
  47. 47. Shabrangy A, Majd A, Sheidai M. Effects of extremely low frequency electromagnetic fields on growth, cytogenetic, protein content and antioxidant system of Zea mays L. Afr J Biotechnol. 2011;10:9362–9. https://doi.org/10.5897/AJB11.097
  48. 48. Mi Xiao-ju MY, Guo Y. Study on the effect of tomato seeds physiology and biochemistry with magnetic field treatment. Bull Bot Res. 1999;19(1):68–74.
  49. 49. Zareei E, Zaare-Nahandi F, Oustan S, Hajilou J. Effects of magnetic solutions on some biochemical properties and production of some phenolic compounds in grapevine (Vitis vinifera L.). Sci Hortic. 2019;253:217–26.
  50. 50. Lockett A. Deciphering hidden mechanisms in the biomagnetic response in plants: a study on the effects of magnetic fields on plant growth, development and molecular responses [dissertation]. Tuskegee (AL): Tuskegee University; 2023.
  51. 51. Tirono M, Mulyono A. Increase of anthocyanin, vitamin C and flavonoid content in red lettuce (Lactuca sativa L.) using alternating magnetic field exposure. Curr Res Nutr Food Sci J. 2023;11(3):1143–52.
  52. 52. Azizi SMY, Hosseini Sarghein S, Majd A, Peyvandi M. The effects of the electromagnetic fields on the biochemical components, enzymatic and non-enzymatic antioxidant systems of tea Camellia sinensis L. Physiol Mol Biol Plants. 2019;25:1445–56.
  53. 53. Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, et al. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci. 2017;8:161. https://doi.org/10.3389/fpls.2017.00161
  54. 54. Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16:86. https://doi.org/10.1186/s12870-016-0771-y
  55. 55. Tapia-Belmonte F, Concha A, Poupin MJ. The effects of uniform and nonuniform magnetic fields in plant growth: a meta-analysis approach. Bioelectromagnetics. 2023;44(5–6):95–106. https://doi.org/10.1002/bem.22445
  56. 56. Ashnaei SP, Sadeghi R, Hosseinian L, Shafaeizadeh A, Zeinalipour M, Keshvari H, et al. Evaluation of the effect of magnetic field on rapeseed growth and the causal agent of blackleg disease, Phoma lingam. Biotechnologia. 2024;105(2):149–58. https://doi.org/10.5114/bta.2024.139754
  57. 57. Shabrangy A, Ghatak A, Zhang S, Priller A, Chaturvedi P, Weckwerth W. Magnetic field induced changes in the shoot and root proteome of barley (Hordeum vulgare L.). Front Plant Sci. 2021;12:622795.
  58. 58. Bahadir A, Beyaz R, Yildiz M. Effect of magnetic field on in vitro seedling growth and shoot regeneration from cotyledon node explants of Lathyrus chrysanthus Boiss. Bioelectromagnetics. 2018;39(7):547–55. https://doi.org/10.1002/bem.22139
  59. 59. Van PT, da Silva JAT, Le Huy H, Tanaka M. Effects of permanent magnetic fields on in vitro growth of Cymbidium and Spathiphyllum shoots. In Vitro Cell Dev Biol Plant. 2012;48(2):225–32. https://doi.org/10.1007/s11627-012-9423-6
  60. 60. Herranz R, Manzano AI, van Loon JJWA, Christianen PCM, Medina FJ. Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments. Astrobiology. 2013;13(3):217–24. https://doi.org/10.1089/ast.2012.0883
  61. 61. Kuznetsov OA, Hasenstein KH. Magnetophoretic induction of curvature in coleoptiles and hypocotyls. J Exp Bot. 1997;48(11):1951–7. https://doi.org/10.1093/jxb/48.11.1951
  62. 62. Peng Z, Yang W, Dong M, Bai H, Lei Y, Pan N, et al. Arabidopsis PIEZO integrates magnetic field and blue light signaling to regulate root growth. bioRxiv. 2025. https://doi.org/10.1101/2025.02.11.637623
  63. 63. Paponov IA, Fliegmann J, Narayana R, Maffei ME. Differential root and shoot magnetoresponses in Arabidopsis thaliana. Sci Rep. 2021;11(1):9195.
  64. 64. De Souza A, Garci D, Sueiro L, Gilart F, Porras E, Licea L. Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics. 2006;27(4):247–57. https://doi.org/10.1002/bem.20206
  65. 65. Paul AL, Ferl RJ, Meisel MW. High magnetic field induced changes of gene expression in Arabidopsis. Biomagn Res Technol. 2006;4:7. https://doi.org/10.1186/1477-044x-4-7
  66. 66. Porcher A, Wilmot N, Bonnet P, Procaccio V, Vian A. Changes in gene expression after exposing Arabidopsis thaliana plants to nanosecond high amplitude electromagnetic field pulses. Bioelectromagnetics. 2024;45(1):4–15. https://doi.org/10.1002/bem.22475
  67. 67. Kataria S, Baghel L, Guruprasad K. Pretreatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatal Agric Biotechnol. 2017;10:83–90. https://doi.org/10.1016/j.bcab.2017.02.010
  68. 68. Singh T, Pandey O. Magnetic-time model at off-season germination. Int Agrophys. 2014;28:57–62. https://doi.org/10.2478/intag-2013-0027
  69. 69. Vashisth A, Nagarajan S. Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics. 2008;29(7):571–8. https://doi.org/10.1002/bem.20426
  70. 70. Zhang J, Wang Q, Wei K, Guo Y, Mu W, Sun Y. Magnetic water treatment: an eco-friendly irrigation alternative to alleviate salt stress of brackish water in seed germination and early seedling growth of cotton (Gossypium hirsutum L.). Plants. 2022;11(11):1397. https://doi.org/10.3390/plants11111397
  71. 71. Menegatti RD, Oliveira LOd, Lira da Costa ÁV, Bolacel Braga EJ, Bianchi VJ. Magnetic field and gibberellic acid as pre-germination treatments of passion fruit seeds. Rev Ciênc Agríc. 2019;17(1):15–22. https://doi.org/10.28998/rca.v17i1.6522
  72. 72. Rezaiiasl A, Ghasemnezhad A, Shahabi AH. Study the response of cucumber plant to different magnetic fields. J Adv Lab Res Biol. 2012;3(1):52–5.
  73. 73. Flórez M, Carbonell MV, Martínez E. Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environ Exp Bot. 2007;59(1):68–75. https://doi.org/10.1016/j.envexpbot.2005.10.006
  74. 74. Volpe P. Interactions of zero-frequency and oscillating magnetic fields with biostructures and biosystems. Photochem Photobiol Sci. 2003;2(6):637–48.
  75. 75. Ercan I, Tombuloglu H, Alqahtani N, Alotaibi B, Bamhrez M, Alshumrani R, et al. Magnetic field effects on the magnetic properties, germination, chlorophyll fluorescence and nutrient content of barley (Hordeum vulgare L.). Plant Physiol Biochem. 2022;170:36–48.
  76. 76. Ivankov A. Impact of seed treatment with cold plasma and electromagnetic field on plant growth, content of secondary metabolites and microbiota [dissertation]. Kaunas: Vytautas Magnus University; 2023.
  77. 77. Zablotskii V, Polyakova T, Lunov O, Dejneka A. How a high-gradient magnetic field could affect cell life. Sci Rep. 2016;6(1):37407.
  78. 78. Zhou X, Zhang L, Zhang P, Xu H, Song J, Chang Y, et al. Comparative transcriptomic analysis revealed important processes underlying the static magnetic field effects on Arabidopsis. Front Plant Sci. 2024;15:1390031. https://doi.org/10.3389/fpls.2024.1390031
  79. 79. Bagherifard AG, Aminallah. Effect of magnetic salinated water on some morphological and biochemical characteristics of artichoke (Cynara scolymus L.) leaves. J Med Plants By-Prod. 2014;3(2):161–70. https://doi.org/10.22092/jmpb.2014.108729
  80. 80. Abeed AHA, Ali M, Ali EF, Majrashi A, Eissa MA. Induction of Catharanthus roseus secondary metabolites when Calotropis procera was used as bio-stimulant. Plants. 2021;10(8):1623. https://doi.org/10.3390/plants10081623
  81. 81. Shine MB, Guruprasad KN. Impact of pre-sowing magnetic field exposure of seeds to stationary magnetic field on growth, reactive oxygen species and photosynthesis of maize under field conditions. Acta Physiol Plant. 2011;34(1):255–65. https://doi.org/10.1007/s11738-011-0824-7
  82. 82. Ramalingam M, Narayanan K, Sivamani J, Kathirvel P, Murali G, Vatin NI. Experimental investigation on the potential use of magnetic water as a water reducing agent in high strength concrete. Materials. 2022;15(15):5219. https://doi.org/10.3390/ma15155219
  83. 83. Xia X, Pagano A, Macovei A, Padula G, Balestrazzi A, Hołubowicz R. Magnetic field treatment on horticultural and agricultural crops: its benefits and challenges. Folia Hortic. 2024;36(1):67–80. https://doi.org/10.2478/fhort-2024-0004
  84. 84. Karimi S, Eshghi S, Karimi S, Hasan-Nezhadian S. Inducing salt tolerance in sweet corn by magnetic priming. Acta Agric Slov. 2017;109(1):89–102. https://doi.org/10.14720/aas.2017.109.1.09
  85. 85. Florez M, Álvarez Sánchez J, Martinez E, Carbonell Padrino M. Stationary magnetic field stimulates rice roots growth. Rom Rep Phys. 2019;71(1):713.

Downloads

Download data is not yet available.