Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Nutritional value, antioxidant activity and color properties of white-fleshed sweet potatoes in Vietnam

DOI
https://doi.org/10.14719/pst.7971
Submitted
27 February 2025
Published
16-10-2025
Versions

Abstract

Sweet potatoes have been considered an essential food source in the human diet for centuries. The study provides comprehensive knowledge on the physico-chemical properties and antioxidant potential of white-fleshed sweet potato (WFSP), to raise consumer awareness of its positive health effects and encourage its greater use. The study also explores whether the food is acidic or alkaline to enhance its health benefits, through Potential Renal Acid Load (PRAL) score. Phenolic acid components were identified and quantified by Ultra-Performance Liquid Chromatography (UPLC), while the functional groups of these compounds were determined by Fourier transform infrared (FTIR) spectroscopy. The results showed that WFSP contains high levels of minerals, including potassium 79.56 mg/100 g, phosphorus 18.69 mg/100 g, magnesium 9.58 mg/100 g and calcium 7.68 mg/100 g. Resistant starch is also present in WFSP at a relative amount of 1.12 %. The total polyphenol content and total flavonoid content were found to be 1.58 mg GAE/g and 0.69 mg QE/g, respectively and it was a source of antioxidant potential (with IC50 DPPH and IC50 ABTS·+ determined as 3.31 mg/mL and 0.38 mg/mL, respectively). WFSP was identified as an alkaline food with a negative value (-0.63). Low-PRAL/alkali-ash diets have been linked to a variety of health benefits, including an improved potassium-to-sodium ratio, less muscle wasting and higher intracellular magnesium concentrations. FTIR analysis showed that the phenolic components in WFSP contained 17 functional groups. UPLC analysis identified the main phenolic acids in WFSP as caffeic acid, coumaric acid and trans-ferulic acid, which are antioxidant compounds that can protect cells from damage.  

References

  1. 1. General Statistic Office. Statistical Yearbook of 2022. Ha Noi (Vietnam): Statistical Publishing House; 2022. 1268 p.
  2. 2. Franková H, Musilová J, Árvay J, Šnirc M, Jančo I, Lidiková J, et al. Changes in antioxidant properties and phenolics in sweet potatoes (Ipomoea batatas L.) due to heat treatments. Molecules. 2022;27(6):1884. https://doi.org/10.3390/molecules27061884
  3. 3. Chen Z, Liang N, Zhang H, Li H, Guo J, Zhang Y, et al. Resistant starch and the gut microbiome: Exploring beneficial interactions and dietary impacts. Food Chem X. 2024;21:101118. https://doi.org/10.1016/j.fochx.2024.101118
  4. 4. Dung NC, Giau TN, Van Hao H, Minh VQ, Thuy NM. Quality attributes, antioxidant activity and color profile of orange-fleshed sweet potato grown in Vietnam. Food Chem. 2024;24:102060. https://doi.org/10.1016/j.fochx.2024.102060
  5. 5. Fadlelmoula A, Pinho D, Carvalho VH, Catarino SO, Minas G. Fourier transform infrared spectroscopy to analyse human blood over the last 20 years: A review towards lab-on-a-chip devices. Micromachines. 2022;13(2):187. https://doi.org/10.3390/mi13020187
  6. 6. Fahelelbom KM, Saleh A, Al-Tabakha MMA, Ashames AA. Recent applications of quantitative analytical FTIR spectroscopy in pharmaceutical, biomedical and clinical fields: A brief review. Rev Anal Chem. 2022;41(1):21-33. https://doi.org/10.1515/revac-2022-0030
  7. 7. Basílio LSP, Nunes A, Minatel IO, Diamante MS, Di Lázaro CB, Silva ACAFe, et al. The phytochemical profile and antioxidant activity of thermally processed colorful sweet potatoes. Horticulturae. 2024;10(1):18. https://doi.org/10.3390/horticulturae10010018
  8. 8. AOAC. Official methods of analysis of the Association of Official Analytical Chemists. 16th ed. Washington (DC): Association of Official Analytical Chemists; 2005.
  9. 9. Avaro MRA, Pan Z, Yoshida T, Wada Y. Two alternative methods to predict amylose content of rice grain by using tristimulus CIE lab values and developing a specific color board of starch-iodine complex solution. Plant Prod Sci. 2011;14(2):164-8. https://doi.org/10.1626/pps.14.164
  10. 10. McCleary BV, McNally M, Rossiter P. Measurement of resistant starch by enzymatic digestion in starch and selected plant materials: Collaborative study. J AOAC Int. 2002;85(5):1103-11. https://doi.org/10.1093/jaoac/85.5.1103
  11. 11. Alam MK, Sams S, Rana ZH, Akhtaruzzaman M, Islam SN. Minerals, vitamin C and effect of thermal processing on carotenoids composition in nine varieties orange-fleshed sweet potato (Ipomoea batatas L.). J Food Compos Anal. 2020;92:103582. https://doi.org/10.1016/j.jfca.2020.103582
  12. 12. AOAC. Official methods of analysis of Association of Official Analytical Chemists. Washington (DC): AOAC International; 2010.
  13. 13. Philpott M, Gould KS, Lim C, Ferguson LR. In situ and in vitro antioxidant activity of sweetpotato anthocyanins. J Agric Food Chem. 2004;52(6):1511-3. https://doi.org/10.1021/jf034593j
  14. 14. Chang C-C, Yang M-H, Wen H-M, Chern J-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10(3):3. https://doi.org/10.38212/2224-6614.2748
  15. 15. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT. 1995;28(1):25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  16. 16. Awika JM, Dykes L, Gu L, Rooney LW, Prior RL. Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content. J Agric Food Chem. 2003;51(18):5516-21. https://doi.org/10.1021/jf0343128
  17. 17. Thuy NM, Giau TN, Hao HV, Dung NC, Tai NV, Minh VQ. Effects of steaming and drying on quality and antioxidant activity of white-fleshed sweet potato powder (Ipomoea batatas). Rev Mex Ing Quim. 2024;23:1-16. https://doi.org/10.24275/rmiq/Alim24184
  18. 18. Cao X, Zhong L, Peng X, Sun S, Li S, Liu S, et al. Comparative study of the pyrolysis of lignocellulose and its major components: Characterization and overall distribution of their biochars and volatiles. Bioresour Technol. 2014;155:21-7. https://doi.org/10.1016/j.biortech.2013.12.006
  19. 19. Ellong EN, Billard C, Adenet S. Comparison of physicochemical, organoleptic and nutritional abilities of eight sweet potato (Ipomoea batatas) varieties. Food Nutr Sci. 2014;5(2):196-311. https://doi.org/10.4236/fns.2014.52025
  20. 20. Aina AJ, Falade KO, Akingbala JO, Titus P. Physicochemical properties of twenty-one Caribbean sweet potato cultivars. Int J Food Sci Technol. 2009;44(9):1696-704. https://doi.org/10.1111/j.1365-2621.2009.01941.x
  21. 21. Sajeev MS, Sreekumar J, Vimala B, Moorthy SN, Jyothi AN. Textural and gelatinization characteristics of white, cream and orange fleshed sweet potato tubers (Ipomoea batatas L.). Int J Food Prop. 2012;15(4):912-31. https://doi.org/10.1080/10942912.2010.509895
  22. 22. Amagloh FC, Kaaya AN, Yada B, Chelangat DM, Katungisa A, Amagloh FK, et al. Bioactive compounds and antioxidant activities in peeled and unpeeled sweetpotato roots of different varieties and clones in Uganda. Future Foods. 2022;6:100183. https://doi.org/10.1016/j.fufo.2022.100183
  23. 23. Kuś PM, Congiu F, Teper D, Sroka Z, Jerković I, Tuberoso CIG. Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT. 2014;55(1):124-30. https://doi.org/10.1016/j.lwt.2013.09.016
  24. 24. Rose IM, Vasanthakaalam H. Comparison of the nutrient composition of four sweet potato varieties cultivated in Rwanda. Am J Food Nutr. 2011;1(1):34-8. https://doi.org/10.5251/ajfn.2011.1.1.34.38
  25. 25. Escobar-Puentes AA, Palomo I, Rodríguez L, Fuentes E, Villegas-Ochoa MA, González-Aguilar GA, et al. Sweet potato (Ipomoea batatas L.) phenotypes: From agroindustry to health effects. Foods. 2022;11(7):1058. https://doi.org/10.3390/foods11071058
  26. 26. Bovell-Benjamin AC. Sweet potato: A review of its past, present and future role in human nutrition. Adv Food Nutr Res. 2007;52:1-59. https://doi.org/10.1016/S1043-4526(06)52001-7
  27. 27. Mu T-H, Tan S-S, Xue Y-L. The amino acid composition, solubility and emulsifying properties of sweet potato protein. Food Chem. 2009;112(4):1002-5. https://doi.org/10.1016/j.foodchem.2008.07.012
  28. 28. Ji H, Zhang H, Li H, Li Y. Analysis on the nutrition composition and antioxidant activity of different types of sweet potato cultivars. Food Nutr Sci. 2015;6(1):7. https://doi.org/10.4236/fns.2015.61017
  29. 29. Ayeleso TB, Ayeni PO, Ayeleso AO, Ramachela K, Mukwevho E. Nutritional and chemical constituents of different cultivars of sweet potato (Ipomoea batatas L.) grown in South Africa. Trop J Nat Prod Res. 2024;8(2):6100-7. https://doi.org/10.26538/tjnpr/v8i2.7
  30. 30. Salawu SO, Udi E, Akindahunsi AA, Boligon AA, Athayde ML. Antioxidant potential, phenolic profile and nutrient composition of flesh and peels from Nigerian white and purple skinned sweet potato (Ipomoea batatas L.). Asian J Plant Sci Res. 2015;5(5):14-23.
  31. 31. Zhao S, Zhong L, Li X, Qin L, Zhou Y, Lei X, et al. Comparative analysis of nutrients, phytochemicals and minerals in colored sweet potato (Ipomoea batatas L.) roots. Foods. 2024;13(22):3636. https://doi.org/10.3390/foods13223636
  32. 32. Utomo JS, Ginting E. Chemical and physical characteristics of twenty one sweet potato genotypes collected from Malaysia. Buletin Palawija. 2022;20(2):71-83.
  33. 33. Krochmal-Marczak B, Sawicka B, Supski J, Cebulak T, Paradowska K, Pigonia S. Nutrition value of the sweet potato (Ipomoea batatas (L.) Lam) cultivated in south-eastern Polish conditions. Int J Agric Agr Res. 2014;4(4):169-78.
  34. 34. Ellong EN, Billard C, Adenet S, Rochefort K. Polyphenols, carotenoids, vitamin C content in tropical fruits and vegetables and impact of processing methods. Food Nutr Sci. 2015;6(3):299-313. https://doi.org/10.4236/fns.2015.63030
  35. 35. Sanoussi A, Adjatin A, Dansi A, Adebowale A, Sanni L, Sanni A. Mineral composition of ten elite sweet potato (Ipomoea batatas [L.] Lam) landraces of Benin. Int J Curr Microbiol Appl Sci. 2016;5(1):103-15. https://doi.org/10.20546/ijcmas.2016.501.009
  36. 36. Ishida H, Suzuno H, Sugiyama N, Innami S, Tadokoro T, Maekawa A. Nutritive evaluation on chemical components of leaves, stalks and stems of sweet potatoes (Ipomoea batatas Poir). Food Chem. 2000;68(3):359-67. https://doi.org/10.1016/S0308-8146(99)00206-X
  37. 37. Franková H, Šnirc M, Jančo I, Čeryová N, Ňorbová M, Lidiková J, et al. Total polyphenols and antioxidant activity in sweet potatoes (Ipomoea batatas L.) after heat treatment. J Microbiol Biotechnol Food Sci. 2022:e5356. https://doi.org/10.55251/jmbfs.5356
  38. 38. Ge X, Jing L, Zhao K, Su C, Zhang B, Zhang Q, et al. The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chem. 2021;335:127655. https://doi.org/10.1016/j.foodchem.2020.127655
  39. 39. Muflihah YM, Gollavelli G, Ling Y-C. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs. Antioxidants. 2021;10(10):1530. https://doi.org/10.3390/antiox10101530
  40. 40. Asem N, Adilah AGN, Hussaini AHN, Omar EA. Correlation between total phenolic and flavonoid contents with antioxidant activity of Malaysian stingless bee propolis extract. J Apic Res. 2020;59(4):437-42. https://doi.org/10.1080/00218839.2019.1684050
  41. 41. Arnao MB. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends Food Sci Technol. 2000;11(11):419-21. https://doi.org/10.1016/S0924-2244(01)00027-9
  42. 42. Huang Y-C, Chang Y-H, Shao Y-Y. Effects of genotype and treatment on the antioxidant activity of sweet potato in Taiwan. Food Chem. 2006;98(3):529-38. https://doi.org/10.1016/j.foodchem.2005.05.083
  43. 43. Phahlane CJ, Laurie SM, Shoko T, Manhivi VE, Sivakumar D. Comparison of caffeoylquinic acids and functional properties of domestic sweet potato (Ipomoea batatas (L.) Lam.) storage roots with established overseas varieties. Foods. 2022;11(9):1329. https://doi.org/10.3390/foods11091329
  44. 44. Osuna-Padilla IA, Leal-Escobar G, Garza-García CA, Rodríguez-Castellanos FE. Dietary acid load: Mechanisms and evidence of its health repercussions. Nefrología (Engl Ed). 2019;39(4):343-54. https://doi.org/10.1016/j.nefroe.2019.08.001
  45. 45. Sravani M, Collins S, Iyengar A. Assessment of dietary acid load in children with chronic kidney disease: An observational study. Indian J Nephrol. 2024;34:50-5. https://doi.org/10.4103/ijn.ijn_29_23
  46. 46. Zhang Y-R, Wang X-L, Zhao G-M, Wang Y-Z. Preparation and properties of oxidized starch with high degree of oxidation. Carbohydr Polym. 2012;87(4):2554-62. https://doi.org/10.1016/j.carbpol.2011.11.036
  47. 47. Mattinen M-L, Filpponen I, Järvinen R, Li B, Kallio H, Lehtinen P, et al. Structure of the polyphenolic component of suberin isolated from potato (Solanum tuberosum var. Nikola). J Agric Food Chem. 2009;57(20):9747-53. https://doi.org/10.1021/jf9020834
  48. 48. Rashid MT, Ma H, Jatoi MA, Hashim MM, Wali A, Safdar B. Influence of ultrasonic pretreatment with hot air drying on nutritional quality and structural related changes in dried sweet potatoes. Int J Food Eng. 2019;15(8). https://doi.org/10.1515/ijfe-2018-0409
  49. 49. Ishiguro K, Yahara S, Yoshimoto M. Changes in polyphenolic content and radical-scavenging activity of sweetpotato (Ipomoea batatas L.) during storage at optimal and low temperatures. J Agric Food Chem. 2007;55(26):10773-8. https://doi.org/10.1021/jf072256v
  50. 50. Kim MY, Lee BW, Lee H-U, Lee YY, Kim MH, Lee JY, et al. Phenolic compounds and antioxidant activity in sweet potato after heat treatment. J Sci Food Agric. 2019;99(15):6833-40. https://doi.org/10.1002/jsfa.9968
  51. 51. Kurata R, Sun H-N, Oki T, Okuno S, Ishiguro K, Sugawara T. Sweet potato polyphenols. In: Mu T-H, Singh J, editors. Sweet potato. Academic Press; 2019. p. 177-222. https://doi.org/10.1016/B978-0-12-813637-9.00007-7
  52. 52. Padda MS, Picha DH. Phenolic composition and antioxidant capacity of different heat-processed forms of sweetpotato cv. Beauregard. Int J Food Sci Technol. 2008;43(8):1404-9. https://doi.org/10.1111/j.1365-2621.2007.01663.x
  53. 53. Boo YC. p-Coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects. Antioxidants. 2019;8(8):275. https://doi.org/10.3390/antiox8080275
  54. 54. Rezaeiroshan A, Saeedi M, Morteza-Semnani K, Akbari J, Gahsemi M, Nokhodchi A. Development of trans-ferulic acid niosome: An optimization and an in-vivo study. J Drug Deliv Sci Technol. 2020;59:101854. https://doi.org/10.1016/j.jddst.2020.101854

Downloads

Download data is not yet available.