Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Advancing pulse crop resilience: Leveraging DSSAT for climate-smart agriculture: A comprehensive review

DOI
https://doi.org/10.14719/pst.8016
Submitted
1 March 2025
Published
15-04-2025

Abstract

Climate change significantly threatens pulse crop production, particularly C? crops like chickpeas, pigeonpeas, lentils and blackgram, which are highly sensitive to rising temperatures and erratic weather patterns. Even brief exposure to heat stress during critical growth stages can cause substantial yield losses. Integrating advanced information technologies and geospatial tools into agricultural decision-making is crucial to mitigate these challenges. The Decision Support System for Agrotechnology Transfer (DSSAT) has emerged as a powerful crop simulation model that aids in assessing and mitigating climate change impacts on pulse crops. This review explores the role of DSSAT in climate-smart agriculture by integrating soil, weather and crop management data for precise yield predictions. By simulating diverse climatic scenarios, DSSAT facilitates the development of adaptive strategies, including selecting heat-tolerant genotypes, optimizing sowing dates and improving irrigation and nutrient management. Moreover, DSSATs’ ability to evaluate extreme weather events such as droughts and heatwaves enhances its application in risk assessment and sustainable agricultural planning. Despite its advantages, challenges such as data availability, model calibration and regional specificity hinder its widespread adoption. Integrating DSSAT with remote sensing, Artificial Intelligence (AI) and Machine Learning (ML) algorithms further enhances its predictive capabilities, making it a more robust tool for climate-resilient pulse production. By leveraging DSSATs’ potential, policymakers, researchers and farmers can develop climate-smart strategies to ensure sustainable pulse production and food security under changing climatic conditions.

References

  1. Nandhini P, Muthumanickam D, Pazhanivelan R, Kumaraperuma R, Ragunath K, Sudarmanian N. Intercomparision of Drone and Conventional Spraying Nutrients on Crop Growth and Yield in Black Gram. Intl J Pl Soil Sci. 2022;34(20):845–52. https://doi.org/10.9734/ijpss/2022/v34i2031231
  2. Sowmyasri S, Rani CS, Sudhakar C, Triveni S. Influence of integrated nutrient management on the productivity of kharif Redgram (Cajanus cajan L.). Intl J Environ Clim Chan. 2023;13(10):2528–32. https://doi.org/10.9734/ijecc/2023/v13i102918
  3. Amiri S, Rahimi–Moghaddam S, Eyni–Nargeseh H. Adopting a strategic approach to dormant seeding and initial soil water management for rainfed lentil agroecosystems. Discover Life. 2024;54(1):1-21. https://doi.org/10.1007/s11084-024-09675-0
  4. Gull R, Bhat TA, Sheikh TA, Wani OA, Fayaz S, Nazir A, et al. Climate change impact on pulse in India–A review. J Pharmac Phytochem. 2020;9(4):3159–66.
  5. Pradipa C, Panneerselvam S, Geethalakshmi V, Bhuvaneeswari K, Maragatham N. Potential impact of future climate change on spatial variability of blackgram yield over Tamil Nadu. J Agromet. 2022;24(2):157–64. https://doi.org/10.54386/jam.v24i2.1030
  6. Kumar N, Kumar S, Nain A. Response of CERES–wheat and CROPGRO–urd model (DSSAT model v 4.5) for tarai region of Uttarakhand. Mausam. 2014;65(1):109–14. https://doi.org/10.54302/mausam.v65i1.930
  7. Hoogenboom G, editor The application of crop modeling for irrigation and water management. Am Soc Agric Biol Engin. https://doi.org/10.13031/irrig.2020–084
  8. El–Sadek AN. Evaluating the Effects of different sowing dates and tillage practices on faba bean yield based on dssat model. Intl J Environ Agric Biotechnol. 2024;9(1) 9(1):115–25.
  9. Corbeels M, Chirat G, Messad S, Thierfelder C. Performance and sensitivity of the DSSAT crop growth model in simulating maize yield under conservation agriculture. Europ J Agron. 2016;76:41–53. https://doi.org/10.1016/j.eja.2016.02.001
  10. Grde? P, Jakubczyk A. Health benefits of legume seeds. J Sci Food Agric. 2023;103(11):5213–20. https://doi.org/10.1002/jsfa.12585
  11. Marimuthu S, Vanitha C, Surendran U, El–Hendawy S, Mattar MA. Conception of improved blackgram (Vigna mungo L.) production technology and its propagation among farmers for the development of a sustainable seeds production strategy. Sustainability. 2024;16(11):4750. https://doi.org/10.3390/su16114750
  12. Rajender B, Tiwari A, Chaturvedi S. Pulses revolution in India through rice–fallows management. In: Wani, SP, Raju K, Bhattacharyya T, editors. Scaling-up solutions for farmers. Cham:Springer; 2021. p. 229–263 https://doi.org/10.1007/978–3–030–77935–1_6
  13. Kumar S, Gopinath K, Sheoran S, Meena RS, Srinivasarao C, Bedwal S, et al. Pulse–based cropping systems for soil health restoration, resources conservation and nutritional and environmental security in rainfed agroecosystems. Front Microbiol. 2023;13:1041124.
  14. https://doi.org/10.3389/fmicb.2022.1041124
  15. Mousavi H. Nitrogen–Enriched Organic fertilizers’ (NEO) effects on crop yields, soil functions and species. PhD [Thesis]; 2023. Rena: Inland Norway University of Applied Sciences, https://hdl.handle.net/11250/3102971
  16. Abayechaw D. Review on decision support system for agrotechnology transfer (DSSAT) model. Inform Sys. 2021;10(6):126–33. https://doi.org/10.11648/j.ijiis.20211006.13
  17. Woli P, Smith GR, Long C, Rouquette Jr FM. Assessing Cowpea–Wheat Double Cropping Strategies in the Southern United States Using the DSSAT Crop Model. Agricultural Sciences. 2022;13(6):758–75. https://doi.org/10.4236/as.2022.136049
  18. Chandran MAS, Banerjee S, Mukherjee A, Nanda MK, Venugopalan VK, Laing AM, et al. Coupling crop simulation modelling and multi–criteria decision aid for ranking the sustainability of cropping sequences. Front Sustain Food Syst. 2023;7:1208283. https://doi.org/10.3389/fsufs.2023.1208283
  19. Hoogenboom G, Porter CH, Boote KJ, Shelia V, Wilkens PW, Singh U, et al. The DSSAT crop modeling ecosystem. In: Boote K, editor. Advances in crop modelling for a sustainable agriculture. Sawston: Burleigh Dodds Science Publishing; 2019. p. 173–216.
  20. Sachin G, Mohammed Ahamed J, Nagajothi K, Rana M, Murugan B. Automation of the DSSAT crop growth simulation model. Intl Arch Photogram Remote Sens Spatial Inform Sci. 2019;42:251–6. https://doi.org/10.5194/isprs–archives–XLII–3–W6–251–2019
  21. Geethalakshmi V, Gowtham R, Gopinath R, Priyanka S, Rajavel M, Senthilraja K, et al. Potential Impacts of future climate changes on crop productivity of cereals and legumes in Tamil Nadu, India: A mid?century time slice approach. Adv Meteorology.2023;2023(1):4540454. https://doi.org/10.1155/2023/4540454
  22. Cuadra SV, Kimball BA, Boote KJ, Suyker AE, Pickering N. Energy balance in the DSSAT–CSM–CROPGRO model. Agric Forest Meteoro. 2021;297:108241. https://doi.org/10.1016/j.agrformet.2020.108241
  23. Ma H, Malone RW, Jiang T, Yao N, Chen S, Song L, et al. Estimating crop genetic parameters for DSSAT with modified PEST software. Europ J Agron. 2020;115:126017.https://doi.org/10.1016/j.eja.2020.126017
  24. Shoukat MR, Wang J, Habib–ur–Rahman M, Hui X, Hoogenboom G, Yan H. Adaptation strategies for winter wheat production at farmer fields under a changing climate: Employing crop and multiple global climate models. Agric Sys. 2024;220:104066. https://doi.org/10.1016/j.agsy.2024.104066
  25. Mirshekarnezhad B. Integrating agrotechnical practices to optimize maize yield potentials in a regional variable climate: DSSAT and Python tools. Cereal Res Comm. 2024;52(1):301–12. https://doi.org/10.1007/s42976–023–00368–4
  26. Suanphrom N, Khurnpoon L, Phakamas N. Small scale method for estimation of genetic coefficients of photoperiod–insensitive rice using generalized likelihood uncertainty estimation. Agric Nat Res. 2023;57(2):211–22. https://doi.org/10.34044/j.anres.2023.57.2.02
  27. Singh PK, Sankar SAG, Agarwal SSK, Singh RS, Singh KK, Gupta A, et al. Simulating impact of climate change on growth and yield of wheat crop grown in various agro–climatic zones of India by using CERES–Wheat (DSSAT v 4.6). Brazil J Develop. 2024;10(6):e70228–e. https://doi.org/10.34117/bjdv10n6–013
  28. Sivamurugan A, Pazhanivelan S, Suganthi A, Bharathi C, Raju M, Manivannan V, et al. Efficacy of new generation herbicide mixtures in irrigated maize (Zea mays). Ind J Agric Sci. 2024;94(11):1183–8. https://doi.org/10.56093/ijas.v94i11.147139
  29. Kothari K, Ale S, Bordovsky JP, Munster CL, Singh VP, Nielsen–Gammon J, et al. Potential genotype–based climate change adaptation strategies for sustaining cotton production in the Texas High Plains: A simulation study. Field Crops Res. 2021;271:108261.https://doi.org/10.1016/j.fcr.2021.108261
  30. Charishma D, Kuligod V, Gundlur S, Potdar M, Doddamani M, Nagaveni H. Estimation of top soil properties by Sentinel–2 imaging. Geol Ecol Landscap. 2024:1–10. https://doi.org/10.1080/24749508.2024.2392920
  31. Trenz J, Memic E, Batchelor WD, Graeff–Hönninger S. Generic optimization approach of soil hydraulic parameters for site–specific model applications. Precision Agric. 2024;25(2):654–80.https://doi.org/10.1007/s11119–023–10087–9
  32. Srinivasan G, Pazhanivelan S, Krishnasamy SM, Sudarmanian N, Rajeswari S, Kannan B. Estimating genetic parameters for DSSAT CROPGRO–cotton model calibration and validation. Intl J Pl Soil Sci. 2021;33(24):165–72. 10.9734/IJPSS/2021/v33i2430764
  33. Mulla DJ, Tahir M, Jungers JM. Comparative simulation of crop productivity, soil moisture and nitrate–N leaching losses for intermediate wheatgrass and maize in Minnesota using the DSSAT model. Front Sustainable Food Sys. 2023;7:1010383. https://doi.org/10.3389/fsufs.2023.1010383
  34. Reddy TV, Saikumar K, Reddy RA, Chary VB, Srinija P, Reddy THV, editors. Integrating soil sensing and rainfall modelling for precision crop recommendation systems. IEEE. 2024. https://doi.org/10.1109/I2CT61223.2024.10543793
  35. Lal D, Niwas R. Yield Predication by DSSAT Model of wheat crop: A Review. Intl J Environ Climate Change. 2024;14(2):519–24. https://doi.org/10.9734/ijecc/2024/v14i23965
  36. Mandapati R, Gumma MK, Metuku DR, Bellam PK, Panjala P, Maitra S, et al. Crop yield assessment using field–based data and crop models at the village level: a case study on a homogeneous rice area in Telangana, India. AgriEngineering. 2023;5(4):1909–24. https://doi.org/10.3390/agriengineering5040117
  37. Kancheti M, Pazhanivelan S, Kumar N, Geethalakshmi V, Kaliaperumal R, Ramanathan S, et al. exploring dssat model genetic coefficient estimation methodologies for chickpea in Bundelkhand Region of Uttar Pradesh, India. Int J Plant Soil Sci. 2023;35(18):1880–6. https://doi.org/10.9734/ijpss/2023/v35i183471
  38. SN, Ahamed I. Assessing the black gram (Vigna mungo) yield due to climate change impacts and its adaptation strategies in the Cauvery delta region of South India. Theo Appl Climat. 2023;153(3):1049–62. https://doi.org/10.1007/s00704–023–04516–y.
  39. Appiah M, Bracho–Mujica G, Svane S, Styczen M, Kersebaum K–C, Rötter RP, editors. The impact of high quality field data on crop model calibration. EGU General Assembly Conf. 2022. https://doi.org/10.5194/egusphere–egu22–2783
  40. Yadav M, Patel C, Singh R, Singh K, Balasubramanian R, Mall R, et al. Assessment of climate change impact on different pigeonpea maturity groups in north Indian condition. J Agrometeo. 2021;23(1):82–92. https://doi.org/10.54386/jam.v23i1.92
  41. Chen S, He L, Cao Y, Wang R, Wu L, Wang Z, et al. Comparisons among four different upscaling strategies for cultivar genetic parameters in rainfed spring wheat phenology simulations with the DSSAT–CERES–Wheat model. Agric Water Manage. 2021;258:107181.https://doi.org/10.1016/j.agwat.2021.107181
  42. Janghel Y, Puranik H. Calibration and validation of cropgro (DSSAT 4.7) Model for Chickpea (Cicer arietinum L.) Crop in Raipur. Intl J Environ Clim Chan. 2023;13(12):1080–86. https://doi.org/10.9734/ijecc/2023/v13i123771
  43. Fang L, Struik PC, Girousse C, Yin X, Martre P. Source–sink relationships during grain filling in wheat in response to various temperature, water deficit and nitrogen deficit regimes. J Exp Bot. 2024;75(20):6563–78. https://doi.org/10.1093/jxb/erae310
  44. Bhatt CK, Nain AS. Integration of Sentinel–1A SAR data with crop simulation model for rice yield prediction in Udham Singh Nagar, Uttarakhand. Mausam. 2024;75(3):649–58. https://doi.org/10.54302/mausam.v75i3.5905
  45. Tefera S, Tesfaye K, Tadesse T, Alem T, Ademe D. Evaluating the effects of the CERES–Rice model to simulate upland rice (Oryza sativa L.) yield under different plant density and nitrogen management strategies in Fogera Plain, Northwest Ethiopia. Heliyon. 2024;10(13). https://doi.org/10.1016/j.heliyon.2024.e33556
  46. Bai Z, Zhang D, Wang Z, Harrison MT, Liu K, Song Z, et al. Challenges and strategies in estimating soil organic carbon for multi–cropping systems: A review. Carbon Footprints. 2024;3(4):15. https://doi.org/10.20517/cf.2024.15
  47. Ghasemi–Saadatabadi F, Zand–Parsa S, Gheysari M, Sepaskhah AR, Mahbod M, Hoogenboom G. Improving prediction accuracy of CSM–CERES–Wheat model for water and nitrogen response using a modified Penman–Monteith equation in a semi–arid region. Field Crops Research. 2024;312:109381. https://doi.org/10.1016/j.fcr.2024.109381
  48. Singh R, Singh K, Gohain GJMES, Environment. Simulating crop yield using the DSSAT v4. 7–CROPGRO–soyabean model with gridded weather and soil data. Model Earth Syst Environ. 2024;10(1):845–53. https://doi.org/10.1007/s40808–023–01807–1
  49. Venkatesan M, Pazhanivelan S. Estimation of maize yield at spatial level using DSSAT crop simulation model. Madras Agric J. 2018;105:548–552. https://doi.org/10.29321/MAJ 2018.000201
  50. Wu J–z, Zhang J, Ge Z–m, Xing L–w, Han S–q, Chen S, et al. Impact of climate change on maize yield in China from 1979 to 2016. J Integ Agric. 2021;20(1):289–99. https://doi.org/10.1016/S2095–3119(20)63244–0
  51. Marrou H, Ghanem ME, Amri M, Maalouf F, Sadoun SB, Kibbou F, et al. Restrictive irrigation improves yield and reduces risk for faba bean across the Middle East and North Africa: A modeling study. Agric Syst. 2021;189:103068. https://doi.org/10.1016/j.agsy.2021.103068
  52. Yang K–W. Integrating crop growth models and remote sensing for predicting performance in sorghum Indiana: Purdue University; 2021.
  53. Ren H, Li Z, Cheng Y, Zhang J, Liu P, Li R, et al. Narrowing yield gaps and enhancing nitrogen utilization for Summer maize (Zea mays L) by combining the effects of Varying nitrogen fertilizer input and planting density in DSSAT simulations. Front Pl Sci. 2020;11:560466. https://doi.org/10.3389/fpls.2020.560466
  54. Lang T, Yang Y, Jia K, Zhang C, You Z, Liang Y. Estimation of winter wheat production potential based on remotely–sensed imagery and process–based model simulations. Remote Sens. 2020;12(17):2857. https://doi.org/10.3390/rs12172857
  55. Ramamoorthy P, Mary P, Saravanapandian P, Gurusamy A, Kumutha K. Geo Statistical tool for soil fertility assessment in pulses growing area of Melur Block, Madurai District, Tamil Nadu. Indian J Agric Res. 2024;58(2). https://doi.org/10.18805/IJARe.A–5929 .
  56. Chaganti VN, Culman SW, Herms C, Sprunger CD, Brock C, Leiva Soto A, et al. Base cation saturation ratios, soil health and yield in organic field crops. Agron J. 2021;113(5):4190–200. https://doi.org/10.1002/agj2.20785
  57. Gunawat A, Sharma D, Sharma A, Dubey SK. Assessment of climate change impact and potential adaptation measures on wheat yield using the DSSAT model in the semi–arid environment. Nat Hazards. 2022:1–20. https://doi.org/10.1007/s11069–021–05130–9
  58. Kebede T, Kebede A. The impact of future climate on faba bean crop phenology and yield in Kutaber Wereda, South Wollo Zone of North Eastern Ethiopia. Research Square. 2023. https://doi.org/10.21203/rs.3.rs–3790673/v1
  59. Kadiyala M, Charyulu DK, Nedumaran S, Shyam DM, Gumma MK, Bantilan M. Agronomic management options for sustaining chickpea yield under climate change scenario. J Agromete. 2016;18(1):41–7. https://doi.org/10.54386/jam.v18i1.897
  60. Ashwini S, Sakthivel N, Pazhanivelan S, Ramah K, Janaki P, Ravichandran V, et al. Evaluating rice yield and resource efficiency: DSSAT analysis of conventional vs. AWD techniques in Coimbatore. Plant Sci Tod. 2024. https://doi.org/10.14719/pst.4770
  61. Dias HB, Inman–Bamber G. Sugarcane: Contribution of process–based models for understanding and mitigating impacts of climate variability and change on production. Systems Model. 2020:217–60. https://doi.org/10.1007/978–981–15–4728–7_8
  62. Sabarinathan B, Pazhanivelan S, Ragunath K, Sivamurugan A, Sudarmanian N. Calibration and validation of CERES–sorghum module of DSSAT model for rabi sorghum under rainfed condition. Pharma Innov J. 2021;10(1):715–8. https://doi.org/10.22271/tpi.2021.v10.i1j.5613
  63. Ragul A, Pazhanivelan S, Sivamurugan A, Boomiraj K, Raghunath K, Mrunalini K. Evaluation of DSSAT–CROPGRO module for spatial yield estimation of chickpea in vidisha (Madhya Pradesh) and Nagaur (Rajasthan), India. Intl J Environ Climate Change. 2023;13(9):2279–88.
  64. Thirumeninathan S, Pazhanivelan S, S Sudarmanian N, P Ragunath K, Gurusamy A, Sritharan N. Calibration and validation of DSSAT CROPGRO peanut model for yield and yield attributing characters of groundnut varieties in northern agro–climatic zone of Tamil Nadu. Intl J Environ Climate Change. 2021. https://doi.org/10.9734/IJECC/2021/v11i1130535
  65. Arshad MN, Ahmad A, Wajid SA, Cheema MJM, Schwartz MW. Adapting DSSAT model for simulation of cotton yield for nitrogen levels and planting dates. Agron J. 2017;109(6):2639–48. https://doi.org/10.2134/agronj2017.04.0233
  66. Jeyajothi R, Pazhanivelan S, Vinothini N, Indhushree A, Ramadass S, Marimuthu S. Evaluation of DSSAT CROPGRO model on growth and yield of pigeonpea cultivars under different fertigation levels. J Appl Nat Sci. 2023;15(3):1071–9. https://doi.org/10.31018/jans.v15i3.4740
  67. Kannan P, Sankar M, Prabhavathi M. Remote sensing and GIS for land use mapping and crop planning in Cauvery delta region of Tamil Nadu, India. Indian J Soil Conserv. 2010;38(3):199–204.
  68. Wu W, Ma B. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review. Sci Tot Environ. 2015;512:415–27.https://doi.org/10.1016/j.scitotenv.2014.12.101
  69. Dar EA, Hoogenboom G, Shah ZA. Meta analysis on the evaluation and application of DSSAT in South Asia and China: Recent studies and the way forward. J Agromet. 2023;25(2):185–204. https://doi.org/10.54386/jam.v25i2.2081
  70. Dhanaraju M, Chenniappan P, Ramalingam K, Pazhanivelan S, Kaliaperumal R. Smart farming: Internet of Things (IoT)–based sustainable agriculture. Agric. 2022;12(10):1745. https://doi.org/10.3390/agriculture12101745
  71. Onyekwelu I, Sharda VJSotTE. Root proliferation adaptation strategy improved maize productivity in the US Great Plains: Insights from crop simulation model under future climate change. Sci Tot Environ. 2024;927:172205. https://doi.org/10.1016/j.scitotenv.2024.172205
  72. Shawon AR, Memic E, Kottmann L, Uptmoor R, Hackauf B, Feike TJAJ. Comprehensive evaluation of the DSSAT?CSM?CERES?Wheat for simulating winter rye against multi?environment data in Germany. Agron J 2024;116(4):1844–68. https://doi.org/10.1002/agj2.21590
  73. Ahmed M, Rehman A, Sarwar N, Do?an H, Abbas G, Khan MA, et al. Deciding sowing–window for maize–based cropping system in arid and semiarid environments in Punjab, Pakistan. Turkish J Agric Forest. 2023;47(6):1078–98. 10.55730/1300–011X.3149
  74. Nath A, Karunakar A, Kumar A, Yadav A, Chaudhary S, Singh SPJE, Environment, et al. Evaluation of the CROPGRO–soybean model (DSSAT v 4.5) in the Akola region of Vidarbha, India. Ecol Environ Conserv. 2017;23:153–9.
  75. Paschapur NS, Medhi K, Sarmah K, Goswami B, Bal SK, Subbarao AV, et al. Assessing Impact of Projected Climate Change on Sali Rice in a Representative District of Upper Brahmaputra Valley Zone of Assam. Intl J Environ Climate Change. 2022;12(10):16–30.1 0.9734/IJECC/2022/v12i1030769
  76. Debnath S, Mishra A, Mailapalli D, Raghuwanshi NJJoW, Change C. Identifying most promising agronomic adaptation strategies to close rainfed rice yield gap in future: a model–based assessment. J Water Clim Change. 2021;12(6):2854–74. https://doi.org/10.2166/wcc.2021.094
  77. Chisanga CB, Phiri E, Chinene VRJN. Evaluating APSIM–and–DSSAT–CERES–Maize models under rainfed conditions using zambian rainfed maize cultivars. Nitrogen. 2021;2(4):392–414. https://doi.org/10.3390/nitrogen2040027
  78. Yao N, Wei Y, Jiang K, Liu J, Li Y, Ran H, et al. Nonlinear water stress response functions can improve the performance of the DSSAT–CERES–Wheat model under water deficit conditions. Agric Water Manage. 2025;307:109235. https://doi.org/10.1016/j.agwat.2024.109235
  79. da Silva FAM, de Oliveira AD, de Carvalho AM, Marchão RL, Luiz AJB, Ribeiro FP, et al. Effects of agricultural management and of climate change on N2O emissions in an area of the Brazilian Cerrado: Measurements and simulations using the STICS soil–crop model. Agric Ecosyst Environ. 2024;363:108842. https://doi.org/10.1016/j.agee.2023.108842
  80. Shen H, Xu F, Zhao R, Xing X, Ma XJTotA. Optimization of Sowing date, irrigation and nitrogen management of summer maize using the DSSAT–CERES–Maize Model in the Guanzhong Plain, China. Transactions of the ASABE. 2020;63(4):789–97.
  81. Gao Y, Xu X, Sun C, Ding S, Huo Z, Huang GJAWM. Parameterization and modeling of paddy rice (Oryza sativa L. ssp. japonica) growth and water use in cold regions: Yield and water–saving analysis. Agric Water Manage. 2021;250:106864. https://doi.org/10.1016/j.agwat.2021.106864
  82. EL–Mansoury M, Saleh SJJoSS, Engineering A. Influence of climatic changes on faba bean (Vicia faba L.) yield in North Nile Delta. J Soil Sci Agric Engin. 2017;8(1):29–34. https://doi.org/10.21608/jssae.2017.37065
  83. Kumagai E, Yamada T, Hasegawa TJF, Security E. Is the yield change due to warming affected by photoperiod sensitivity? Effects of the soybean E4 locus. Food Ener Sec. 2020;9(1):e186. https://doi.org/10.1002/fes3.186
  84. Zhang D, Liu J, Li D, Batchelor WD, Wu D, Zhen X, et al. Future climate change impacts on wheat grain yield and protein in the North China Region. Sci Tot Environ. 2023;902:166147. https://doi.org/10.1016/j.scitotenv.2023.166147
  85. Tofa AI, Kamara AY, Mohamed AM, Garba M, Souley AM, Salissou H, et al. Assessment of climate change impact and adaptation strategy for millet in the Sudano–Sahelian region of Niger. Reg Environ Change. 2024;24(4):151. https://doi.org/10.1007/s10113–024–02313–5
  86. Yadav M, Patel C, Singh R, Singh K, Balasubramanian R, Mall R, et al. Assessment of climate change impact on different pigeonpea maturity groups in north Indian condition. J Agrometeorol. 2021;23(1):82–92. https://doi.org/10.54386/jam.v23i1.92
  87. Angourakis A, Bates J, Baudouin J–P, Giesche A, Walker JR, Ustunkaya MC, et al. Weather, land and crops in the Indus Village model: A simulation framework for crop dynamics under environmental variability and climate change in the Indus Civilisation. Quaternary. 2022;5(2):25. https://doi.org/10.3390/quat5020025
  88. Chinnasamy P, Shanmugam P, Vellingiri G, Jaganathan R, Bhuvaneeswari K, Vigneswaran SJJoA. Modelling adaptation strategies towards climate smart red gram production in Tamil Nadu. J Agrometeorol. 2023;25(4):525–31. https://doi.org/10.54386/jam.v25i4.2280
  89. El–Sadek A, Abd EL–Ghany F, Shaalan A. Simulating the effect of tillage practices on the yield production of wheat and barley under dryland conditions. Agronomy Res. 2020;18(4):2374–90. https://doi.org/10.15159/ar.20.188

Downloads

Download data is not yet available.