Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 4 (2025)

Revolutionizing fruit breeding through multi-omics approaches: From genomics to synthetic biology

DOI
https://doi.org/10.14719/pst.8024
Submitted
2 March 2025
Published
10-10-2025 — Updated on 20-10-2025
Versions

Abstract

Omics technologies have revolutionized fruit breeding by providing unprecedented insights into the genetic, molecular and biochemical mechanisms underlying desirable traits. The integration of genomics, transcriptomics, proteomics, metabolomics and epigenomics has enabled the identification of key genes, pathways and regulatory networks associated with fruit quality, shelf life and stress tolerance. Genomics-assisted breeding, including genome-wide association studies (GWAS) and marker-assisted selection (MAS), has accelerated the development of improved cultivars with enhanced traits. Transcriptomics and proteomics have shed light on the complex gene expression and protein dynamics during fruit development and ripening, while metabolomics has identified crucial metabolites influencing flavor, nutritional value and postharvest quality. Epigenomics has revealed the role of epigenetic modifications in regulating fruit-related processes and environmental adaptability. High-throughput phenotyping, coupled with omics data, has facilitated rapid and accurate trait assessment, enabling breeders to make informed decisions. The application of CRISPR/Cas genome editing has opened new avenues for precise manipulation of fruit traits. However, the ethical and regulatory aspects of omics-based breeding must be carefully considered to ensure responsible implementation and public acceptance. By harnessing the power of omics technologies and integrating them with traditional breeding approaches, researchers can develop climate-resilient, high-quality fruit crops that meet the growing demands of consumers and contribute to sustainable agriculture.

References

  1. 1. Minamikawa M, Nonaka K, Hamada H, Shimizu T. Iwata H. Dissecting breeders sense via explainable machine learning approach: application to fruit peelability and hardness in citrus. Front Plant Sci. 2022;13. https://doi.org/10.3389/fpls.2022.832749
  2. 2. Iwata H, Minamikawa M, Kajiya‐Kanegae H, Ishimori M, Hayashi T. Genomics-assisted breeding in fruit trees. Breed Sci. 2016;66(1):100-15. https://doi.org/10.1270/jsbbs.66.100
  3. 3. Mathiazhagan M, Chidambara B, Laxman R, Ravishankar K. Genomic approaches for improvement of tropical fruits: fruit quality, shelf life and nutrient content. Genes. 2021;12(12):1881. https://doi.org/10.3390/genes12121881
  4. 4. Huang Y, Zhao Z, Xu H, Shyr Y, Zhang B. Advances in systems biology: computational algorithms and applications. BMC Syst Biol. 2012;6(3):S1. https://doi.org/10.1186/1752-0509-6-s3-s1
  5. 5. Chuang H, Hofree M, Ideker T. A decade of systems biology. Annu Rev Cell Dev Biol. 2010;26(1):721-44. https://doi.org/10.1146/annurev-cellbio-100109-104122
  6. 6. Meneses C, Orellana A. Using genomics to improve fruit quality. Biol Res. 2013;46(4):347-52. https://doi.org/10.4067/s0716-97602013000400006
  7. 7. Nocker S, Gardiner S. Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic Res. 2014;1(1):14022. https://doi.org/10.1038/hortres.2014.22
  8. 8. Minamikawa M, Takada N, Terakami S, Saito T, Onogi A, Kajiya‐Kanegae H, et al. Genome-wide association study and genomic prediction using parental and breeding populations of Japanese pear (Pyrus pyrifolia nakai). Sci Rep. 2018;8(1):11994. https://doi.org/10.1038/s41598-018-30154-w
  9. 9. Minamikawa M, Nonaka K, Kaminuma E, Kajiya‐Kanegae H, Onogi A, Goto S, et al. Genome-wide association study and genomic prediction in citrus: potential of genomics-assisted breeding for fruit quality traits. Sci Rep. 2017;7(1):4721. https://doi.org/10.1038/s41598-017-05100-x
  10. 10. Peng Z, Li W, Gan X, Zhao C, Paudel D, Su W, et al. Genome-wide analysis of saur gene family identifies a candidate associated with fruit size in loquat (Eriobotrya japonica lindl.). Int J Mol Sci. 2022;23(21):13271. https://doi.org/10.3390/ijms232113271
  11. 11. Chagne D, Vanderzande S, Kirk C, Profitt N, Weskett R, Gardiner S, et al. Validation of snp markers for fruit quality and disease resistance loci in apple (Malus × domestica Borkh.) using the openArray® platform. Hortic Res. 2019;6(1):169-73. https://doi.org/10.1038/s41438-018-0114-2
  12. 12. Xiao H, Wang C, Khan N, Chen M, Fu W, Guan L, et al. Genome-wide identification of the class III POD gene family and their expression profiling in grapevine (Vitis vinifera L). BMC Genomics. 2020;21:444. https://doi.org/10.1186/s12864-020-06828-z
  13. 13. Penna S. Jain SM. Fruit crop improvement with genome editing, in vitro and transgenic approaches. Horticulturae. 2023;9(1):58. https://doi.org/10.1080/07388551.2019.1608153
  14. 14. Majumdar S, Keller, A. Omics to address the opportunities and challenges of nanotechnology in agriculture. Crit Rev Environ Sci Technol. 2020;51(22):2595-636. https://doi.org/10.1080/10643389.2020.1785264
  15. 15. Li T, Wang YH, Liu JX, Feng K, Xu ZS, Xiong AS. Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops. Crit Rev Biotechnol. 2019;39(5):680-92. https://doi.org/10.1080/07388551.2019.1608153
  16. 16. Ashraf MA, Iqbal M, Rasheed R, Hussain I, Riaz M, Arif MS. Environmental stress and secondary metabolites in plants: an overview. Plant Metab Environ Stress. 2018;153-167. https://doi.org/10.1016/B978-0-12-812689-9.00008-X
  17. 17. Hodgins-Davis A, Townsend JP. Evolving gene expression: from G to E to G × E. Trends Ecol Evol. 2009;24(12):1649-58. https://doi.org/10.1016/j.tree.2009.06.011
  18. 18. Dutt M, Dhekney SA, Soriano L, Kandel R, Grosser JW. Temporal and spatial control of gene expression in horticultural crops. Hortic Res. 2014;1:14047. https://doi.org/10.1038/hortres.2014.47
  19. 19. Lu P, Yu S, Zhu N, Chen YR, Zhou B, Pan Y, et al. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat Plants. 2018;4(10):784-91. https://doi.org/10.1038/s41477-018-0249-z
  20. 20. Kuniga T, Yoshioka T, Nonaka K, Mitani N, Fukamachi H, Hiehata N, et al. Single-step genomic prediction of fruit-quality traits using phenotypic records of non-genotyped relatives in citrus. Plos One. 2019;14(8):0221880. https://doi.org/10.1371/journal.pone.0221880
  21. 21. Nantawan U, Kanchana-udomkan C, Bar I, Ford R. Linkage mapping and quantitative trait loci analysis of sweetness and other fruit quality traits in papaya. BMC Plant Biol. 2019;19(1):449. https://doi.org/10.1186/s12870-019-2043-0
  22. 22. van Nocker S. Gardiner SE. Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic Res. 2014;1:14022. https://doi.org/10.1038/hortres.2014.22
  23. 23. Bemer M, Karlova R, Ballester A, Tikunov Y, Bovy A, Wolters‐Arts M, et al. The tomato fruitfull homologs tdr4/ful1 and mbp7/ful2 regulate ethylene-independent aspects of fruit ripening. Plant Cell. 2012;24(11):4437-51. https://doi.org/10.1105/tpc.112.103283
  24. 24. Wang S, Lu G, Zheng H, Luo Z, Wang T, Li H, et al. Members of the tomato fruitfull mads-box family regulate style abscission and fruit ripening. J Exp Bot. 2014;65(12):3005-14. https://doi.org/10.1093/jxb/eru137
  25. 25. Roy A. FEAtl a comprehensive web-based expression atlas for functional genomics in tropical and subtropical fruit crops. Res Square. 2024. https://doi.org/10.21203/rs.3.rs-4716219/v1
  26. 26. Zhu C, Feng C, Li X, Xu C, Sun C, Chen K. Analysis of expressed sequence tags from Chinese bayberry fruit (Myrica rubra Sieb. and Zucc.) at different ripening stages and their association with fruit quality development. Int J Mol Sci. 2013;14(2):3110-23. https://doi.org/10.3390/ijms14023110
  27. 27. Hou D, Hussain Q, Imran M, Pei J, Ali M, Shehzad A, et al. Entailing the next-generation sequencing and metabolome for sustainable agriculture by improving plant tolerance. Int J Mol Sci. 2022;23(2):651. https://doi.org/10.3390/ijms23020651
  28. 28. Liu R, How‐Kit A, Stammitti L, Teyssier E, Rolin D, Mortain‐Bertrand A, et al. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc Natl Acad Sci. 2015;112(34):10804-9. https://doi.org/10.1073/pnas.1503362112
  29. 29. Lang Z, YiHai W, Tang K, Tang D, Datsenka T, Cheng J, et al. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc Natl Acad Sci. 2017;114(22):E4511-9. https://doi.org/10.1073/pnas.1705233114
  30. 30. Tang D, Gallusci P, Lang Z. Fruit development and epigenetic modifications. New Phytol. 2020;228(3):839-44. https://doi.org/10.1111/nph.16724
  31. 31. Zhang P. Unlocking epigenetic breeding potential in tomato and potato. Abiotech. 2024;5(4):507-18. https://doi.org/10.1007/s42994-024-00184-2
  32. 32. Chao H, Zhang S, Hu Y, Ni Q, Xin S, Zhao L, et al. Integrating omics databases for enhanced crop breeding. J Integr Bioinform. 2023;20(4):267-70. https://doi.org/10.1515/jib-2023-0012
  33. 33. Giovannoni J, Nguyen C, Ampofo B, Zhong S, Fei Z. The epigenome and transcriptional dynamics of fruit ripening. Annu Rev Plant Biol. 2017;68(1):61-84. https://doi.org/10.1146/annurev-arplant-042916-040906
  34. 34. Giacomo M. An integrative transcriptomics and proteomics approach to identify putative genes underlying fruit ripening in tomato near isogenic lines with long shelf life. Plants. 2023;12(15):2812. https://doi.org/10.3390/plants12152812
  35. 35. Waris I. The regulation of stress responses in fruit crops is influenced by plant hormones: a review. Asian J Res Agri For. 2024;10(1):72-8. https://doi.org/10.9734/ajraf/2024/v10i1270
  36. 36. Kumar A. Biosynthesis, mechanism and potential application of hormones for mitigating stress, conserving bioactive constituents in fruits. Int J Plant Soil Sci. 2023;35(19):1467-80. https://doi.org/10.9734/ijpss/2023/v35i193690
  37. 37. Rachappanavar V, Kumar M, Sharma J, Panday H. sharma C. Plant hormone-mediated regulation Shinozakin of stress responses in fruit crops - a review. Authorea. 2020. https://doi.org/10.22541/au.160466945.56576285/v1
  38. 38. Ramlrez Torres F, Ghogare‬ R, Stowe E, Cerda‐Bennasser P, Lobato-Gomez M, Williamson-Benavides B, et al. Genome editing in fruit, ornamental, and industrial crops. Transgenic Res. 2021;30(4):499-528. https://doi.org/10.1007/s11248-021-00240-3
  39. 39. Martin-Valmaseda M. CRISPR as genome editing technique in fruit trees breeding. Preprints.org. 2023. https://doi.org/10.20944/preprints202311.0143.v1
  40. 40. Kapazoglou A, Gerakari M, Lazaridi E, Kleftogianni K, Sarri E, Tani E, et al. Crop wild relatives: a valuable source of tolerance to various abiotic stresses. Plants. 2023;12(2):328. https://doi.org/10.3390/plants12020328
  41. 41. Aziz M, Masmoudi K. Insights into the transcriptomics of crop wild relatives to unravel the salinity stress adaptive mechanisms. Int J Mol Sci. 2023;24(12):9813. https://doi.org/10.3390/ijms24129813
  42. 42. Tohge T. From fruit omics to fruiting omics: systematic studies of tomato fruiting by metabolic networks. Mol Plant. 2020;13(8):1114-6. https://doi.org/10.1016/j.molp.2020.07.012
  43. 43. Guo S. Using high-throughput phenotyping analysis to decipher the phenotypic components and genetic architecture of maize seedling salt tolerance. Genes. 2023;14(9):1771. https://doi.org/10.3390/genes14091771
  44. 44. Kumar S. Active learning with gaussian processes for high throughput phenotyping. arXiv. 2019. https://doi.org/10.48550/arxiv.1901.06803
  45. 45. Zhou J, Ye H, Nguyen H. High-throughput crop phenotyping systems for controlled environments. In: High-throughput crop phenotyping. concepts and strategies in plant sciences. Springer, Cham.; 2021. p. 183-208. https://doi.org/10.1007/978-3-030-73734-4_9
  46. 46. Choi H. Translational genomics and multi-omics integrated approaches as a useful strategy for crop breeding. JGG. 2018;41(2):133-46. https://doi.org/10.1007/s13258-018-0751-8
  47. 47. Cembrowska-Lech D. An integrated multi-omics and artificial intelligence framework for advance plant phenotyping in horticulture. Biology. 2023;12(10):1298. https://doi.org/10.3390/biology12101298
  48. 48. Razzaq M, Aleem M, Mansoor S, Khan M, Rauf S, Iqbal S, et al. Omics and CRISPR-Cas9 approaches for molecular insight, functional gene analysis, and stress tolerance development in crops. Int J Mol Sci. 2021;22(3):1292. https://doi.org/10.3390/ijms22031292
  49. 49. Farooqi M, Nawaz G, Wani S, Choudhary J, Rana M, Sah R, et al. Recent developments in multi-omics and breeding strategies for abiotic stress tolerance in maize (Zea mays l.). Front Plant Sci. 2022;13. https://doi.org/10.3389/fpls.2022.965878
  50. 50. Habibi F, Serrano M, Zacarıas L, Valero D, Guillen F. Postharvest application of 24-epibrassinolide reduces chilling injury symptoms and enhances bioactive compounds content and antioxidant activity of blood orange fruit. Front Plant Sci. 2021;12. https://doi.org/10.3389/fpls.2021.629733
  51. 51. Gutierrez-Villamil, D, Balaguera-Lopez, H, Alvarez-Herrera J. Brassinosteroids improve postharvest quality, antioxidant compounds, and reduce chilling injury in ‘Arrayana’ mandarin fruits under cold storage. Horticulturae. 2023;9(6):622. https://doi.org/10.3390/horticulturae9060622
  52. 52. Pott D, Vallarino J, Osorio S. Metabolite changes during postharvest storage: effects on fruit quality traits. Metabolites. 2020;10(5):187. https://doi.org/10.3390/metabo10050187
  53. 53. Owoyemi A, Porat R, Lichter A, Doron‐Faigenboim A, Jovani O, Koenigstein N, et al. Evaluation of the storage performance of ‘valencia’ oranges and generation of shelf-life prediction models. Horticulturae. 2022;8(7):570. https://doi.org/10.3390/horticulturae8070570586073
  54. 54. Zhang Z, Chen J, Li B, Chen Y, Tian S, et al. Influence of oxidative stress on biocontrol activity of Cryptococcus laurentii against blue mold on peach fruit. Front Microbiol. 2017;8. https://doi.org/10.3389/fmicb.2017.00151
  55. 55. Belay Z, Caleb O. Role of integrated omics in unravelling fruit stress and defence responses during postharvest: a review. Food Chem-Mol Sci. 2022;5:100118. https://doi.org/10.1016/j.fochms.2022.100118
  56. 56. Roychowdhury R, Das S, Gupta A, Parihar P, Chandrasekhar K, Sarker U, et al. Multi-omics pipeline and omics-integration approach to decipher plant’s abiotic stress tolerance responses. Genes. 2023;14(6):1281. https://doi.org/10.3390/genes14061281
  57. 57. Zhang R, Zhang C, Yu C, Dong J, Hu J, et al. Integration of multi-omics technologies for crop improvement: status and prospects. Front Bioinform. 2022;2. https://doi.org/10.3389/fbinf.2022.1027457
  58. 58. Wang S, Wei J, Li R, Qu H, Chater J, Ma R, et al. Identification of optimal prediction models using multi-omic data for selecting hybrid rice. Heredity. 2019;123(3):395-406. https://doi.org/10.1038/s41437-019-0210-6
  59. 59. Anusha MR, Amir M. Integrating omics approaches for climate-resilient crops: a comprehensive review. J Adv Boil. 2024;27(6):351-63. https://doi.org/10.9734/jabb/2024/v27i6895

Downloads

Download data is not yet available.