Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Harvest quality and postharvest preservation of melon fruits by the effect of agronomic biofortification with iodine compounds and complexes

DOI
https://doi.org/10.14719/pst.8032
Submitted
2 March 2025
Published
11-09-2025 — Updated on 06-10-2025
Versions

Abstract

Agronomic biofortification, particularly with iodine, enriches crops with essential nutrients, addressing nutritional deficiencies. This enhances plant resilience, increasing disease resistance and yield. Consuming iodine-biofortified foods helps prevent diseases such as thyroid disorders and developmental issues. In this study, we evaluated freshly harvested and postharvest fruit quality to determine the effect of biofortification with chitosan, iodine salts (KI and KIO3) and chitosan-iodine complexes (CS KI and CS KIO3) at concentrations of 5 and 25 mg (iodine ion) on Syngenta ‘Sweet Sunrise’ hybrid melon (Cucumis melo L.) cultivars. Physicochemical parameters, such as weight, equatorial diameter and flesh firmness, were assessed in freshly harvested fruit. During postharvest storage at 25 °C for 5, 10 and 15 days, weight loss, flesh firmness, peel and flesh color (L, a*, b*, chroma, °hue), pH, total soluble solids (°Brix), titratable acidity and TSS/TA ratio were measured. Chitosan and iodine salts did not significantly affect weight loss or equatorial diameter. However, KIO3 had a notable effect on melon properties, enhancing peel and flesh coloration, increasing pH and improving total soluble solids. These findings suggest that chitosan and iodine salts act as natural preservatives, maintaining postharvest quality and enhancing the sweetness and flavor of fruits, making them promising alternatives for extending shelf life and improving melon quality. Among the treatments, CS + KIO₃ at 25 mg was the most effective in preserving postharvest quality and is recommended as the optimal strategy for biofortification in melon.

References

  1. 1. Hewett EW. An overview of preharvest factors influencing postharvest quality of horticultural products. Int J Postharvest Technol Innov. 2006;1(1):4–15. https://doi.org/10.1504/IJPTI.2006.009178
  2. 2. Wachowska M, Adamczak M. Importance of iodine fortification in food production: human health and technology. J Elementol. 2023;28(1):199–222. https://doi.org/10.5601/jelem.2022.27.4.2342
  3. 3. AndradeAndrade-Sifuentes A, Gaucin Gaucin-Delgado JM, Fortis Fortis-Hernandez M, OjedaOjeda-Barrios DL, Rodrnguez Rodrnguez-Ortiz JC, Sanchez Sanchez-Chavez E, et al. Iodine biofortification improves yield and bioactive compounds in melon fruits. Hortic Bras. 2024;42:e275325. https://doi.org/10.1590/s0102-0536-2024-e275325
  4. 4. Nascimento VL, Souza BC, Lopes G, Guilherme LR. On the role of iodine in plants: A commentary on benefits of this element. Front Plant Sci. 2022;13:836835. https://doi.org/10.3389/fpls.2022.836835
  5. 5. Smolen S, Wierzbinska J, Sady W, Kołton A, Wiszniewska A, Liszka-Skoczylas M. Iodine biofortification with additional application of salicylic acid affects yield and selected parameters of chemical composition of tomato fruits (Solanum lycopersicum L.). Sci Hortic. 2015;188:89–96. https://doi.org/10.1016/j.scienta.2015.03.023
  6. 6. Voogt W, Holwerda HT, Khodabaks R. Biofortification of lettuce (Lactuca sativa L.) with iodine: The effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture. J Sci Food Agric. 2010;90(5):906–13. https://doi.org/10.1002/jsfa.3902
  7. 7. Wu Z, Liu Y, Wang W. The burden of iodine deficiency. Arch Med Sci. 2024;20(5):1–11. https://doi.org/10.5114/aoms/178012
  8. 8. Zhang L, Shang F, Liu C, Zhai X. The correlation between iodine and metabolism: A review. Front Nutr. 2024;11:1346452. https://doi.org/10.3389/fnut.2024.1346452
  9. 9. Tonacchera M, Dimida A, De Servi M, Frigeri M, Ferrarini E, De Marco G, et al. Iodine fortification of vegetables improves human iodine nutrition: In vivo evidence for a new model of iodine prophylaxis. J Clin Endocrinol Metab. 2013;98(4):694 694–7. https://doi.org/10.1210/ jc.2012 2012-3509
  10. 10. Duborska E, Bujdos M, Urik M, Matus P. Iodine fractionation in agricultural and forest soils using extraction methods. Catena. 2020;195:104749. https://doi.org/10.1016/j.catena.2020.104749
  11. 11. LeijaLeija-Martinez P, Benavides Benavides-Mendoza A, Rocha Rocha-Estrada A, Medrano Medrano-Macias JR. Biofortificacion con yodo en plantas para consumo humano. Rev Mex Cienc Agricolas. 2016;7(8):2025–36.
  12. 12. Blasco B, Rios JJ, Cervilla LM, Sanchez Sanchez-Rodriguez E, Ruiz JM, Romero L. Iodine biofortification and antioxidant capacity of lettuce: Potential benefits for cultivation and human health. Ann Appl Biol. 2008;152(3):289–99. https://doi.org/10.1111/j.1744-7348.2008.00217.x
  13. 13. Landini M, Gonzali S, Perata P. Iodine biofortification in tomato. J Plant Nutr Soil Sci. 2011;174(3):480–86. https://doi.org/10.1002/jpln.201000395
  14. 14. CortesCortes-Flores C, Rodriguez Rodriguez-Mendoza MN, Benavides Benavides-Mendoza A, GarciaGarcia-Cue JL, Tornero Tornero-Campante M, Sanchez Sanchez-Garcia P. Iodine increases the growth and mineral concentration in sweet pepper seedlings. Agrociencia. 2016;50(6):747–58.
  15. 15. Zhu YG, Huang YZ, Hu Y, Liu YX. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations. Environ Int. 2003;29(1):33–7. https://doi.org/10.1016/S0160-4120(02)00129-0
  16. 16. Kiferle C, Ascrizzi R, Martinelli M, Gonzali S, Mariotti L, Pistelli L, et al. Effect of Iodine treatments on Ocimum basilicum L.: biofortification, phenolics production and essential oil composition. PLoS One. 2019;14(12):e0226559. https://doi.org/10.1371/journal.pone.0226559
  17. 17. Blasco B, Rios JJ, Leyva R, Cervilla LM, Sanchez Sanchez-Rodriguez E, Rubio Rubio-Wilhelmi MM, et al. Does iodine biofortification affect oxidative metabolism in lettuce plants?. Biol Trace Elem Res. 2011;142:831–42. https://doi.org/10.1007/s12011-010-8816-9
  18. 18. Zhang Y, Cao H, Wang M, Zou Z, Zhou P, Wang X, et al. A review of iodine in plants with biofortification: uptake, accumulation, transportation, function and toxicity. Sci Total Environ. 2023;878:163203. https://doi.org/10.1016/j.scitotenv.2023.163203
  19. 19. Gonzali S, Kiferle C, Perata P. Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Curr Opin Biotechnol. 2017;44:16–26. https://doi.org/10.1016/j.copbio.2016.11.002
  20. 20. Izydorczyk G, Ligas B, Mikula K, Witek-Krowiak A, Moustakas K, Chojnacka K.. Biofortification of edible plants with selenium and iodine: A systematic literature review. Sci Total Environ. 2021;754:141983. https://doi.org/10.1016/j.scitotenv.2020.141983
  21. 21. Ingle PU, Shende SS, Shingote PR, Mishra SS, Sarda V, Wasule DL, et al. Chitosan nanoparticles (ChNPs): A versatile growth promoter in modern agricultural production. Heliyon. 2022;8(11):e11893. https://doi.org/10.1016/j.heliyon.2022.e11893
  22. 22. Mageshen VR, Reddy Kiran Kalyan VS, Manimaran G. Characterization of chitosan iodate complex and its role on iodine uptake in tomato (Lycopersicon esculentum). J Trop Agric. 2023;61(2):268–74
  23. 23. DavilaDavila-Rangel IE, Trejo Tellez LI, Ortega Ortiz H, Juarez Maldonado A, Gonzalez Morales S, Companioni Gonzalez B, et al. Comparison of iodide, iodate and iodine-chitosan complexes for the biofortification of lettuce. Appl Sci. 2020;10(7):2378. https://doi.org/10.3390/app10072378
  24. 24. GordilloGordillo-Melgoza FA, Borrego Escalante F, Lozano Cavazos CJ, Torres VR, Nieves Rodriguez Rodriguez-Mendoza MDL, Gonzalez Fuentes JA, et al . Melon plant response to applications potassium iodine. Revista Mexicana de Ciencias Agricolas. 2016;7(17):3465 3465–75. https:// doi.org/10.5555/20173199254
  25. 25. Villanueva MJ, Tenorio MD, Esteban MA, Mendoza MC. Compositional changes during ripening of two cultivars of muskmelon fruits. Food Chem. 2004;87(2):179–85. https://doi.org/10.1016/j.foodchem.2003.11.009
  26. 26. Li F, Li S, Li HB, Deng GF, Ling WH, Wu S, et al. Antiproliferative activity of peels, pulps and seeds of 61 fruits. J Funct Foods. 2013;5:1298–309. https://doi.org/10.1016/j.jff.2013.04.016
  27. 27. RomoRomo-Tovar J, Belmares Cerda R, Chavez Chavez-Gonzalez ML, Rodriguez Rodriguez-Jasso RM, Lozano Lozano-Sepulveda SA, Govea Govea-Salas M, et al. Importance of certain varieties of cucurbits in enhancing heath: A review. Foods. 2024;13(8):1142. https://doi.org/10.3390/foods13081142
  28. 28. CidCid-Lopez ML, Soriano Soriano-Melgar LA, Garcia Garcia-Gonzalez A, Cortez Cortez-Mazatan G, Mendoza-Mendoza E, Rivera-Cabrera F, et al. The benefits of adding calcium oxide nanoparticles to biocompatible polymeric coatings during cucumber fruits postharvest storage. Sci Hortic. 2021;287:10285. https://doi.org/10.1016/j.scienta.2021.110285
  29. 29. AOAC. Official methods of analysis [Internet]. Washington (DC): Association of Official Analytical Chemists; 1990 [cited 2025 Aug 12]. Available from: https://www.aoac.org/official official-methodsmethods-ofof-analysis
  30. 30. DamasDamas-Job M, Soriano Soriano-Melgar LA, Rodriguez Rodriguez-Herrera R, Peralta Peralta-Rodriguez RD, Rivera Rivera-Cabrera F, MartinezMartinez-Vazquez DG . Effect of broccoli fresh residues-based extracts on the postharvest quality of cherry tomato (Solanum lycopersicum L.) fruits. Sci Hortic. 2023;317:112076. https://doi.org/10.1016/j.scienta.2023.112076
  31. 31. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW, et al. InfoStat version [Internet]. Cordoba (AR): Grupo InfoStat, FCA, Universidad Nacional de Córdoba; 2011 [cited 2025 Aug 12]. Available from: http://www.infostat.com.ar
  32. 32. Pulela BL, Maboko MM, Soundy P, Amoo SO. Cultivar and postharvest storage duration influence fruit quality, nutritional and phytochemical profiles of soilless-grown cantaloupe and honeydew melons. Plants. 2022;11:2136. https://doi.org/10.3390/plants11162136
  33. 33. GordilloGordillo-Melgoza FA, Borrego Borrego-Escalante F, Lozano Lozano-Cavazos C, Torres V, Montejo N, MEendoza M, et al. Impact of iodine biofortification on greenhouse melon (Cucumis melo L.) growth and production. Int J Plant Soil Sci. 2022;34(23):1729–41. https://doi.org/10.9734/IJPSS/2022/v34i232597
  34. 34. Weng HX, Yan AL, Hong CL, Xie LL, Qin YC, Cheng CQ. Uptake of different species of iodine by water spinach and its effect to growth. Biol Trace Elem Res. 2008;124(2):184–94. https://doi.org/10.1007/s12011-008-8137-4
  35. 35. Dixit G, Bisen PK, Prajapati SK, Uikey P, Lodhi R. Performance of nutrient management on morpho-phenological parameters of muskmelon (Cucumis melo). J Pharm Innov.2023;12(10):2016–20.
  36. 36. Alamo JM, Maquieira A, Puchades R, Sagrado S. Determination of titratable acidity and ascorbic acid in fruit juices in continuous-flow systems. Fresenius J Anal Chem. 1993;347:293–98. https://doi.org/10.1007/BF00323975
  37. 37. Flores FB, Martinez-Madrid MC, Sanchez-Hidalgo FJ, Romojaro F. Differential rind and pulp ripening of transgenic antisense ACC oxidase melon. Plant Physiol Biochem. 2001;39(1):37–43. https://doi.org/10.1016/S0981-9428(00)01210-9
  38. 38. Mageshen VR, Santhy P. Effect of chitosan iodate complex biofortification on nutrient uptake in ‘shivam’hybrid of tomato (Solanum lycopersicum L.). J Appl Nat Sci. 2023;15(2):549–54. https://doi.org/10.31018/jans.v15i2.4461
  39. 39. Farcuh M, Copes B, Le-Navenec G, Marroquin J, Cantu D, Bradford KJ, et al. Sensory, physicochemical and volatile compound analysis of short and long shelf-life melon (Cucumis melo L.) genotypes at harvest and after postharvest storage. Food Chem: X. 2020;8:100107. https://doi.org/10.1016/j.fochx.2020.100107
  40. 40. Zhang Y, Cao H, Wang M, Zou Z, Zhou P, Wang X, et al. A review of iodine in plants with biofortification: uptake, accumulation, transportation, function and toxicity. Sci Total Environ. 2023;878:163203. https://doi.org/10.1016/j.scitotenv.2023.163203

Downloads

Download data is not yet available.