Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

A comprehensive review of advanced seed treatment techniques to enhance Amaranthus cultivation and productivity

DOI
https://doi.org/10.14719/pst.8047
Submitted
3 March 2025
Published
14-04-2025 — Updated on 30-04-2025
Versions

Abstract

Amaranth is a highly valued leafy vegetable known for its exceptional nutrient profile, including high-quality protein, dietary fiber and essential vitamins and minerals. The seeds of amaranth are particularly rich in calcium, magnesium, phosphorus and vitamin C, making them a valuable component of a healthy diet. Additionally, amaranth is well-suited for terrace gardening and sustainable agriculture. However, despite its nutritional benefits, the consumption of amaranth in daily diets remains limited. One of the major challenges in amaranth cultivation is the imbibition issue caused by the tannin-rich testa and exotegmen cells in the seed coat. These factors contribute to poor seed quality, delayed germination and prolonged dormancy, which can last several years, ultimately reducing crop productivity. Seed treatment plays a crucial role in overcoming these limitations by improving seed viability and enhancing germination rates. Effective seed treatment methods help eliminate non-viable seeds, break dormancy and improve the physico-chemical properties of seeds. Furthermore, seed treatments can enhance seedling vigor, provide resistance against biotic and abiotic stresses and improve overall crop establishment. Conventional techniques such as priming, scarification and chemical treatments, as well as advanced methods like hydropriming, biopriming and nano priming, have shown promising results in enhancing amaranth seed quality. This critical review explores various seed treatment strategies, comparing their effectiveness and highlighting their potential to improve amaranth production. A better understanding of these techniques can help optimize amaranth cultivation and contribute to its increased adoption in sustainable food systems.

 

References

  1. (1) Soriano-Garcia M, Aguirre-Diaz IS. Nutritional functional value and therapeutic utilization of Amaranth, in: V.Y. Waisundara (Ed.). Nutritional value of Amaranth, InTech. 2019; 86897. https://doi.org/10.5772/intechopen.86897
  2. (2) Rastogi A, Shukla S. Amaranth: A new millennium crop of nutraceutical values, Crit. Reviews. Food Sci and Nut. 2012;53(2):109-25. https://doi.org/10.1080/10408398.2010.517876
  3. (3) Venskutonis PR, Kraujalis P, Nutritional components of amaranth seeds and vegetables: A review on composition, properties, and uses. Compr. Reviews Food Sci Food Safety. 2013;12(4):381-412. https://doi.org/10.1111/1541-4337.12021
  4. (4) Orona-Tamaya D, Paredes-Lopez O, Amaranth Part 2-Sustainable crop for the 21st Centuary: Food properties and Nutraceuticals for Improving Human Health, Sustainable Protein Sources (Second edition) 2024. https://doi.org/10.1016/B978-0-323-91652-3.00017-4
  5. (5) Pandhare R, Balakrishnan S, Mohite P, Khanage S. Antidiabetic and antihyperlipidemic potential of Amaranthus viridis (L.) Merr. in streptozotocin induced diabetic rats. Asian Pacific J Tropical Dis. 2012;2(1):S180-S185. https://doi.org/10.1016/S2222-1808(12)60148-0
  6. (6) Adegbola PI, Adetutu A, Olaniyi TD. Antioxidant activity of Amaranthus species from the Amranthaceae family-A review. South African J Botany, 2020;133:111-17. https://doi.org/10.1016/j.sajb.2020.07.003
  7. (7) Martinez-Lopez A, Milan-Linares MC, Rodriguez-Martin NM, Millan F, Paz SM. Nutraceutical value of kiwicha (Amaranthus caudatus L.). J Func Foods. 2020;65: 103735. https://doi.org/10.1016/j.jff.2019.103735
  8. (8) Chandra AK, Chandora R, Sood S, Malhotra N.Chapter-2 Global Production, demand and supply, In: M. Singh, S. Sood (Eds.), In Woodhead Publishing Series in Food Science, Technology and Nutrition, Millets and Pseudo Cereals. Woodhead Publishing, 2021; pp.7-18. https://doi.org/10.1016/B978-0-12-820089-6.00002-1
  9. (9) Berger A, Gremaud G, Baumgartner M, Rein D, Monnard I, Kratky E, et al. Cholestrol-lowering properties of amaranth grain and oil in Hamsters. Int J Vitam Nutr Res. 2013;73(1):39-47. https://doi.org/10.1024/0300-9831.73.1.39
  10. (10) Aphalo P, Martinez EN, Anon MC. Amaranth Sprout: A Potential health promoting and nutritive natural food. Int J Food Properties. 2015;18(2):2688–98. https://doi.org/10.1080/10942912.2015.1004585
  11. (11) Emire SA, Arega M. Value added product development and quality charatcterization of amaranth (Amaranthus caudatus L.) grown in East Africa. African J Food Sci Tech. 2012;3(6):129-41. http://www.interesjournals.org/AJFST.
  12. (12) Das S, Amaranthus: A promising crop of future, first ed. Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-1469-7
  13. (13) Akin-Idowu PE, Odunola OA, Gbadegesin MA, Ademoyegun OT, Aduloju AO, Olagunju YO. Nutritional evaluation of five species of grain amaranth-an underutilized crop. Int J Sci. 2017;6(1):18-27. https://doi.org/10.18483/ijSci.1131
  14. (14) Alemayehu FR, Bendevis MA, Jacobsen SE. The potential for utilizing the seed crop amaranth (Amaranthus spp.) in East Africa an alternative crop to support food security and climate change mitigation. J Agronomy Crop Sci. 2014;201(5):321-29. https://doi.org/10.1111/jac.12108
  15. (15) Ejieji CJ, Adeniran KA. Effects of water and fertilizer stress on the yield, fresh and dry matter production of grain amaranth (Amaranthus cruentus). Australian J Agricul Engineering, 2010;1(1):18-24.
  16. (16) Eisenman SW, Olszewski MW. Imbibition, germination and anatomy of Amaranthus pumilus (Seabeach amaranth) seeds. Seed Sci Technol. 2016;44(1):91-103. https://doi.org/10.15258/sst.2016.44.1.19
  17. (17) Nonogaki H. Seed dormancy and germination—emerging mechanisms and new hypotheses. Frontiers in Plant Sci. 2014;(5):233.
  18. (18) Finch?Savage WE, Leubner?Metzger G. Seed dormancy and the control of germination. New Phytologist. 2006;171(3):501-23. https://doi.org/10.1111/j.1469-8137.2006.01787.x
  19. (19) Sohindji FS, Sogbohossou DEO, Zohoungbogbo HPF, Houdegbe CA, Achigan-Dako EG. Understanding molecular mechanisms of seed dormancy for improved germination in traditional leafy vegtables: An overview. Agronomy. 2020;10(1):57. https://doi.org/10.3390/agronomy10010057
  20. (20) Govindaraj M, Masilamani P, Albert VA, Bhaskaran M. Effect of physical seed treatment on yield and quality of crops: A review. Agricul reviews. 2017;38(1):1-14. https://doi.org/10.18805ag.v0iOF.7304
  21. (21) Li RS, Zonneveld MV. Seed longevity of two nutrient-dense vegetables (Amaranthus spp.). Seed Sci Technol. 2021;49(1):25-31. https://doi.org/10.15258/sst.2021.49.1.04
  22. (22) Koch E, Roberts SJ. Non-chemical seed treatment in the control of seed-borne pathogens. In: Gullino, M., Munkvold, G. (Eds.) Global perspectives on the health of seeds and plant propagation material. Plant Pathology in the 21st Century, 6, Springer, Dordrecht, 2014;6. https://doi.org/10.1007/978-94-017-9389-6_8
  23. (23) Pelinganga OM, Mphosi MS. Improvement of amaranthus hybridus seed germination under green house condition. Res Crops. 2020;21(1):138-40. https://doi.org/10.31830/2348-7542.2020.023
  24. (24) Loonat TA, Heever EV, Hammes P. Effect of temperature in the germination of grain amaranth. South African J Plant Soil. 2003;20(3):152-53. https://doi.org/10.1080/02571862.2003.10634925
  25. (25) Vidotto F, De Palo F, Ferrero. Effect of short-duration high temperatures on weed seed germination. Annals Appl Biol. 2013;163(3):454-65. https://doi.org/10.1111/aab.12070
  26. (26) Moreno AH, Hernandez R, Ballesteros I. Microwave drying of seeds of agricultural interest for Ecuador. Ampere newsletter, 2017;92:28-32.
  27. (27) Weller S, Florentine S, Javid MM, Welgama A, Chadha A, Chauhan BS, et al. Amaranthus retroflexus L. (Redroot pigweed): Effects of elevated CO2 and soil moisture on growth and biomass and the effect of radiant heat on seed germination. Agronomy. 2021;11(4):728. https://doi.org/10.3390/agronomy11040728
  28. (28) Gilbert J, Woods SM, Turkington TK, Tekauz A. Effect of heat treatment to control Fusarium graminearum in wheat seed. Canadian J Plant Pathol. 2010;27(3):448-52. https://doi.org/10.1080/07060660509507244
  29. (29) Olawoye BT, Gbadamosi SO, Yildiz F. Effect of different treatments on in vitro protein digestibility, antinutrients, antioxidant properties and mineral composition of Amaranthus viridis seed. Cogent Food & Agricul. 2017;3(1):1296402. https://doi.org/10.1080/23311932.2017.1296402
  30. (30) Antonova-Karacheva GM. Effect of pre-sowing electromagnetic processing on the sowing and morphological characters of Bulgarian pepper varieties (Capsicum annuum). Indian J Agricul Res. 2020;54(2):154-60. https://doi.org/10.18805/IJARe.A-483
  31. (31) Sujak A, Dziwulska-Hunek A. Minerals and fatty acids of amaranth seeds subjected to pre-sowing electromagnetical stimulation. Int Agrophys. 2010;24:375-79.
  32. (32) Dziwulska-Hunek A, Sujek A, Kornarzynski K. Short-term exposure to pre-sowing electromagnetic radition of amaranth seeds affects germination energy but not photosynthetic pigment content. Polish J Environ Studies. 2013;22(1):93-8.
  33. (33) Dziwulska-Hunek A, Kornarzynski K, Matwijczuk AP. Effect of laser and variable magnetic field simulation on amaranth seeds grmination. Int Agrophys. 2009;23(3):229-35.
  34. (34) Ji S, Choi K, Pengkit A, Im JS, Kim JS, Kim YH, et al. Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach. Archives of Biochem Biophys. 2016;605:117-28. https://doi.org/10.1016/j.abb.2016.02.028
  35. (35) Adhikary D, Foryth JA, Murch SJ, Deyholos MK. Impact of betacyanins on responses to ultraviolet radiation in Amaranthus tricolor L. Plant-Environ Interactions. 2020;15(1):117-26. https://doi.org/10.1080/17429145.2020.1766584
  36. (36) Liu B, Liu X, Li Y, Hebert SJ. Effects of enhanced UV-B radiation on seed growth characteristics and yield components in soybean. Field Crops Res. 2013;154:158-63. https://doi.org/10.1016/j.fcr.2013.08.006
  37. (37) Kornarzynski K, Dziwulska-Hunek A, Kornarzynska-Gregorowicz A, Sujak A. Effect of electomagnetic stimulation of amaranth seeds of different initial moisture on the germination parameters and photosynthetic pigments content. Scientific Rep. 2018;8:14023. https://doi.org/10.1038/s41598-018-32305-5
  38. (38) Ahmadnia F, Alebrahim MT, Souha LN, MacGregor DR. Evaluation of techniques to break seed dormancy in redroot pigweed (Amaranthus retroflexus). Food Sci Nutr. 2023;12(4):2334-45. https://doi.org/10.1002/fsn3.3920
  39. (39) Karagoz FP, Dursun A. Ultra-sonic applications used in seed viability, seedling growth and plant development of ornamentals. J Inst Sci Technol. 2021;11:3416-28. https://doi.org/10.21597/jist.1027370
  40. (40) Urrutia G, Bonfill X. PRISMA Statement: A proposal to improve the publication of systemic reviews and meta-analyses. Clinical Medicine. 2010;135(11):507-11. https://doi.org/10.1016/j.medcli.2010.01.015
  41. (41) Vashisth A, Nagarajan S. Effect on germination and early growth charateristcis in sunflower Helianthus annuus) seeds exposed to static magnetic field. J Plant Physiol. 2010;167(2):149-56. https://doi.org/10.1016/j.jplph.2009.08.011
  42. (42) Kahramanogullari CT, Beyaz R, Alizadeh B, Yildiz M. The effect of magnetic field on in vitro seed germination, seedling growth and shoot regeneration from cotyledon node explants of Lathyrus chrysanthus Boiss. New Biotechnol. 2012;29:S138. https://doi.org/10.1016/j.nbt.2012.08.387
  43. (43) Esitken A, Turan M. Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria x ananassa cv. Camarosa). Acta Agriculturae Scandiavica. 2007;54(3):135-39. https://doi.org/10.1080/09064710310019748
  44. (44) Krishnaraj C, Yun S, Kumar VKA. Effect of magnetized water (Biotron) on seed germination of Amarathaceae family. J Academia Industrial Res. 2017;5(10):152-56. https://api.semanticscholar.org/CorpusID:199524650
  45. (45) Sharififar A, Nazari M, Asghari HR. Effect of ultrasonic waves on seed germination of Atriplex lentiformis, Cuminum cyminum, and Zygophyllum eurypterum. J Appl Res Medicinal Aromat Plants. 2015;2(3):102-04. https://doi.org/10.1016/j.jarmap.2015.05.003
  46. (46) Saursaubet M, Mathisen KM, Skarpe C. Effects of increased soil scarification intensity on Natural regeneration of scots pine Pinus sylvestris L. and birch Betula spp. L. Forests. 2018;9(5):262. https://doi.org/10.3390/f9050262
  47. (47) Willis JL, Walters MB, Gottschalk KW. Scarification and gap size have interacting effects on northern temperate seedling establishment. Forest Ecol Manag. 2015;347:237-47. https://doi.org/10.1016/j.foreco.2015.02.026
  48. (48) Bogaerts A, Neyts E, Gijbels R, Mullen J. Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectrosc. 2002;57(4):609-58. https://doi.org/10.1016/S0584-8547(01)00406-2
  49. (49) Ling L, Jiafeng J, Jiangang L, Minchong S, Xin H, Hanliang S, et al. Effects of cold plasma treatment on seed germination and seedling growth of soybean Scientific Rep. 2014;4:5859. https://doi.org/10.1038/srep05859
  50. (50) Bormashenko E, Grynyov R, Bormashenko Y, Drori E. Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Scientific Rep. 2012;2(1):741. https://doi.org/10.1038/srep00741
  51. (51) Di L, Zhang J, Zhang X, Wang H, Li H, Li Y, Bu D. Cold plasma treatment of catalytic materials: a review. Journal of Physics D: Applied Physics. 2021;54(33):333001. https://doi.org/10.1002/csc2.20513
  52. (52) Pankaj SK, Keener KM. Cold plasma: background, applications and current trends. Curr Opin Food Sci. 2017;16:49-52. https://doi.org/10.1016/j.cofs.2017.07.008
  53. (53) Adhikari B, Pongomm K, Veerana M, Mitra S, Park G. Plant Disease control by non-thermal atmospheric pressure plasma. Front Plant Sci. 2020;11:77. https://doi.org/10.3389/fpls.2020.00077
  54. (54) Guo Q, Meng Y, Qu G, Wang T, Yang F, Liang D, et al. Improvement of wheat seed vitality by dielectric barrier discharge plasma treatment. Bioelectromagnetics. 2017;39 (2):120-31. https://doi.org/10.1002/bem.22088
  55. (55) Gomez-Ramirez A, Lopez-Santos C, Cantos M, Garcia JL, Molina R, Cortino J, et al. Surface chemistry and germination improvement of quinoa seeds subjected to plasma activation. Scientific Rep. 2017;7:5924.
  56. https://doi.org/10.1038/s41598-017-06164-5
  57. (56) Sirova J, Sedlarova M, Piterkova J, Luhova L, Pertivalsky M. The role of nitric oxide in the germination of plant seeds and pollen. Plant Sci. 2011;181(5):560-72. https://doi.org/10.1016/j.plantsci.2011.03.014
  58. (57) Tiwari DK, Pandey P, Giri SP, Dwedi JL. Effect of GA3 and other plant growth regulators on hybrid rice seed production. Asian J Plant Sci. 2011;10(2):133-39. https://doi.org/10.3923/ajps.2011.133.139
  59. (58) Tapfumaneyi L, Dube P, Mavengahama S, Ngezimana W. Effect of gibberellic acid and pottassium nitrate seed treatments on the emergence and seedling vigor of amaranth and Cleome gynandra, Agrosystems. Geosci & Environ. 2023;6(1):e20359. https://doi.org/10.1002/agg2.20359
  60. (59) Kepczyski J, Sznigir P. Response of Amaranthus retroflexus L. seeds to gibberellic acid, ethylene and abscisic acid depending on duration of stratification and burial. Plant Growth Regul. 2012;70:15-26. https://doi.org/10.1007/s10725-012-9774-3
  61. (60) Gayathri N, Sailesh AR, Srinivas N. Effect of lithium on seed germination and plant growth of Amaranthus viridis. J Appl Nat Sci. 2022;14(1):133-39. https://doi.org/10.31018/jans.v14i1.3165
  62. (61) Jisha KC, Vijayakumari K, Puthur JT. Seed Priming for abiotic stress tolerence: an overview. Acta Physiologiae Plantarum. 2013;35:1381-96. https://doi.org/10.1007/s11738-012-1186-5
  63. (62) Poovizhi M, Sujatha K. Improvement in seed germination by priming treatments in black nightshade (Solanum nigrum L.). J Appl Natural Sci. 2020;12(2):84-87. https://doi.org/10.31018/jans.vi.2244
  64. (63) Pawar VA, Laware SL. Seed Priming: A critical review. Int J Sci Res Biol Sci. 2018;5(5):94-101. https://doi.org/10.26438/ijsrbs/v5i5.94101
  65. (64) Corbineau F, Taskiran-Ozbingol N, El-Maarouf-Bouteau H. Improvement of seed quality by priming: Concept and biological basis. Seeds. 2023;2(1):101-15. https://doi.org/10.3390/seeds2010008
  66. (65) Raj AB, Raj SK. Seed priming: An approach towards agricultural sustainability. J Appl Nat. Sci. 2019;11(1):227-34. https://doi.org/10.31018/jans.v11i1.2010
  67. (66) Chen X, Zhang R, Xing Y, Jiang B, Li B, Xu X, et al. The efficacy of different seed priming agents for promoting sorghum germination under salt stress. PLoS ONE. 2021;16(1): e0245505. https://doi.org/10.1371/journal.pone.0245505
  68. (67) He M, He C, Ding N. Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci. 2018;9:1771. https://doi.org/10.3389/fpls.2018.01771
  69. (68) Tiryaki I, Korkmaz A, Nas MN, Ozbay N. Priming combined with plant growth regulators promotes germination and emergence of dormant Amaranthus cruentus L. seeds. Seed Sci Technol. 2005;33(3)571-79. https://doi.org/10.15258/sst.2005.33.3.05
  70. (69) Musa M, Singh A, Lawal AA. Influence of priming duration on the performance of amaranthus (Amaranthus cruentus L.) in Sokoto semiarid zone of Nigeria. Int J Agronomy. 2014;(1): 475953. https://doi.org/10.1155/2014/475953
  71. (70) Musa M, Lawal AA. Influence of priming concentration on the growth of amaranth (Amranthus cruentus L.) in Sokoto semi-arid zone of Nigeria. J Plant Sci. 2015;3(1):27-30. https://doi.org/10.11648/j.jps.20150301.15
  72. (71) Gins EM. Seed priming effects on seed quality and antioxidant system in the seedlings of Amaranthus tricolor L.. SABRAO J Breed Genetics. 2022;54(3):638-48. http://doi.org/10.54910/sabrao2022.54.3.16
  73. (72) Amalia DR, Rachmawati D. Morphological responses of red amaranth (Amaranthus tricolor L.) to osmopriming treatment to overcoming salinity stress. IOP conference series: Earth Environ Sci. 2023;1165:012017. https://doi.org/10.1088/1755-1315/1165/012017
  74. (73) Moosavi A, Afshari RT, Sharifzadeh F, Aynehband A. Effect of seed priming on germination characteristics, polyphenoloxidase, and peroxidase activities of four amaranth cultivars. J Food Agricul Environ. 2009;7:353-58.
  75. (74) Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A. Effect of saline water on seed germination and early seedling growth of the Haplophyte quinoa. AoB Plants, 2014;6:plu047. https://doi.org/10.1093/aobpla/plu047
  76. (75) Pallaoro DS, Camili EC, Guimaraes SC, Albuquerque MCF. Methods for priming maize seeds. J Seed Sci. 2016;38(02):148-54. https://doi.org/10.1590/2317-1545v38n2161132
  77. (76) Jyoti B, Bhandari S. Seed pelleting-A key for enhancing the seed quality. Rashtriya Krishi. 2016;11(1):76-7. https://www.i-scholar.in/index.php/Rk/article/view/117702
  78. (77) Pavithra M, Renugadevi J, Priya RS, Vigneswari R. Standardization of optimum pellet size for improving seedling vigour in amranthus (Amaranthus tricolor). Pharma Innovation. 2021;10(10):2103-05.
  79. (78) Eisele TC, Kawatra SK. A review of binders in iron ore pelletization. Miner Process Extractive Metallurgy Rev. 2010;24(1):1-90. https://doi.org/10.1080/08827500306896
  80. (79) Tengfei X, Nanda S, Fengliang J, Qingsheng L, Xia F. Control efficiency and mechanism of spinetoram seed-pelleting against the striped flea beetle Phyllotreta striolata. Scientific Reports. 2022;12(1):9524. https://doi.org/10.21203/rs.3.rs-1078315/v1
  81. (80) Pedrini S, Webber Z, D’Agui H, Dixon K, Just M, Arya T, et al. Customise the seeds, not the seeder: Pelleting of small-seeded species for ecological restoration. Ecol Eng. 2023;196:107105. https://doi.org/10.1016/j.ecoleng.2023.107105
  82. (81) Rocha I, Ma Y, Souza-Alonso P, Vosatka M, Freitas H, Oliveira RS. Seed coating: A tool for delivering beneficial microbes to agricultural crops. Front Plant Sci. 2019;10:1357. https://doi.org/10.3389/fpls.2019.01357
  83. (82) Taylor AG. Seed storage, germination, quality, and enhancements. CABI. 2020;1-30. https://doi.org/10.1079/9781786393777.0001
  84. (83) Mlakar SG, Turinek M, Jakop M, Bavec M, Bavec F. Nutrition value and use of grain amaranth: potential future application in bread making. Agricultura. 2009;6(4):43-53.
  85. (84) Repo-Carrasco-Valencia R, Hellström JK, Pihlava JM, Mattila PH. Flavonoids and other phenolic compounds in andean indigenous grains: Quinoa (Chenopodium quinoa), Kaniwa (Chenopodium pallidicaule) and Kiwicha (Amaranthus caudatus). Food Chemistry. 2010;120(1):128-33. https://doi.org/10.1016/j.foodchem.2009.09.087
  86. (85) Pandey C, Prabha D, Negi YK, Maheshwari DK. Macrolactin a mediated biocontrol of two important fungal pathogens of Amaranthus hypochondriacus by Bacillus subtilis BS. SSRN. 2022;58:4178841. https://doi.org/10.2139/ssrn.4178841
  87. (86) Jr WTF, Arshad M. Phytohormones in soils microbial production & function. CRC Press. 2020. https://doi.org/10.1201/9780367812256
  88. (87) Lamichhane JR, Durr C, Schwank AA, Robin M, Sarthou J, Cellier V, et al. Integrated management of damping-off diseases. A review. Agronomy Sustainable Dev. 2017;37:10. https://doi.org/10.1007/s13593-017-0417-y
  89. (88) Al-Hussini HS, Al-Rawahi AY, Al-Marhoon AA, Al-Abri SA, Al-Mahmooli IH, Al-Sadi AM, et al. Biological control of damping-off of tomato caused by Pythium aphanidermatum by using native antagonistic rhizobacteria isolated from Omani soil. J Plant Pathol. 2019;101:315-22. https://doi.org/10.1007/s42161-018-0184-x
  90. (89) Dube P, Struik PC, Ngadze E. Seed health tests of traditional leafy vegetables and pathogenicity in plants. African J Agricul Res. 2018;13(15):753-70. https://doi.org/10.5897/AJAR2018.13001
  91. (90) Sharma PK, Gothalwal R. Trichoderma: A potent fungus as biological control agent. Agro-Environ. Sustainability. 2017;113-25. https://doi.org/10.1007/978-3-319-49724-2_6
  92. (91) Muhammed HM, Aliyu AD, Stephen DY. Biocontrol potential of Gliocladium virens against damping off inducing pathogens in Amaranthus hybridus. J Biosci Biotechnol Discovery. 2022;7(3):42-6. https://doi.org/10.31248/JBBD2022.168
  93. (92) Nile SH, Baskar V, Selvaraj D, Nile A, Xiao J, Kai G. Nanotechnologies in food science: applications, recent trends, and future perspectives. Nano-Micro Lett. 2020;12:45 https://doi.org/10.1007/s40820-020-0383-9
  94. (93) Guha T, Ravikumar KVG, Mukherjee A, Mukherjee A, Kundu R. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiol Biochem. 2018;127:403-13. https://doi.org/10.1016/j.plaphy.2018.04.014
  95. (94) Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS. Nanoaprticulate material delivery to plants. Plant Sci. 2010;179(3):154-63. https://doi.org/10.1016/j.plantsci.2010.04.012
  96. (95) Ghormade V, Deshpande MV, Paknikar KM. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv. 2011;29(6):792-803. https://doi.org/10.1016/j.biotechadv.2011.06.007
  97. (96) Siddqui MH, Al-Whaibi MH, Mohammad F. Nanotechnology and plant sciences. Springer Cham. 2016. https://doi.org/10.1007/978-3-319-14502-0
  98. (97) Achari GA, Kowshik M. Recent developments on nanotechnology in agriculture: Plant mineral nutrition, health, and interactions with soil microflora. J Agricul Food Chem. 2018;66(33):8647-61. https://doi.org/10.1021/acs.jafc.8b00691
  99. (98) Li C, Jhou S, Ciou J, Lin Y, Hung S, Chang J, et al. Exposure to low levels of photocatalytic TiO2 nanoparticles enhances seed germination and seedling growth of amaranth and cruciferous vegetables. Scientific Rep. 2022;12:18228. https://doi.org/10.1038/s41598-022-23179-9
  100. (99) Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, et al. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019;214:269-77. https://doi.org/10.1016/j.chemosphere.2018.09.120
  101. (100) Tamilarasan C, Raja K. Influence of nano formulation on augmenting the seed quality in groundnut (Arachis hypogaea L.). Legume Res. 2020;47(1):14-9. https://doi.org/10.18805/LR-4487

Downloads

Download data is not yet available.