Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 2 (2025)

Valourizing agricultural farm waste with bioinoculants for plant growth promotion and disease management

DOI
https://doi.org/10.14719/pst.8068
Submitted
4 March 2025
Published
28-04-2025 — Updated on 09-05-2025
Versions

Abstract

Soilborne pathogens such as Fusarium spp., Pythium spp., Phytophthora spp., Verticillium spp. causes significant yield loss to various agricultural and horticultural crops. These diseases are difficult to control by chemicals which are harmful to environment and crop health. On the other hand, continuous usage of pesticides leads to the development of pesticides resistance by the pathogens. Valourizing the farm waste by microbial bioinoculants is an alternative and promising approach for controlling soilborne diseases. Farm waste releases bioactive compounds with antifungal and antibacterial properties. Farm waste utilization reduces pesticide dependence by enriching soil, enhancing microbial diversity and promotes sustainable agriculture. Microbial bioinoculants serve as alternatives to synthetic pesticides for the management of plant pathogens. Beneficial microbes like nitrogen-fixing bacteria, phosphate-solubilizing microbes and biocontrol agents play a crucial role in strengthening the plant immunity against pathogens. These beneficial organisms not only improve soil biodiversity but also ensure better plant growth and development. This review focuses on the enrichment of agricultural farm wastes such as fruits and vegetable waste, coir pith, farm yard manure, biochar and chicken manure with bioinoculants for soil borne disease management. Harnessing microbial bioinoculants for farm waste valorization presents a promising pathway toward sustainable agriculture, ensuring environmental protection and long-term soil health.

References

  1. Marak TB, Tiwari A, Roy A. Conversion of agricultural residues into high-value animal feed. In: Arora J, Joshi A, Ray RC, editors. Transforming agriculture residues for sustainable development: from waste to wealth. Vol. 202. Springer, Cham; 2024. p. 205-221. https://doi.org/10.1007/978-3-031-61133-9_9
  2. World Wildlife Fund. Driven to waste: the global impact of food loss and waste on farms; 2021 [cited 2024 Aug 2]. Available from: https://www.worldwildlife.org/publications/driven-to-waste-the-global-impact-of-food-loss-and-waste-on-farms
  3. Chew KW, Chia SR, Yen HW, Nomanbhay S, Ho YC, Show PL. Transformation of biomass waste into sustainable organic fertilizers. Sustainability. 2019;11(8):2266. https://doi.org/10.3390/su11082266
  4. Kalia A, Sharma SP, Kaur S, Kaur H. Bacterial inoculants: how can these microbes sustain soil health and crop productivity? In: Giri B, Varma A, editors. Soil health. Soil biology. Vol. 59. Springer, Cham; 2020. p. 337-72. https://doi.org/10.1007/978-3-030-44364-1_18
  5. Prasad D, Singh RP, Tomar A, Pusa SB. Biological management of plant diseases through bacterial bioagents. Rashtriya Krishi. 2023;18(1&2):15-22.
  6. Sivaprakasam N, Vaithiyanathan S, Gandhi K, Narayanan S, Kavitha PS, Rajasekaran R, et al. Metagenomics approaches in unveiling the dynamics of Plant Growth-Promoting Microorganisms (PGPM) vis-à-vis Phytophthora sp. suppression in various crop ecological systems. Res Microbiol. 2024;175:104217. https://doi.org/10.1016/j.resmic.2024.104217
  7. Jeyanthi V, Kanimozhi S. Plant growth promoting rhizobacteria (PGPR)-prospective and mechanisms: a review. J Pure Appl Microbiol. 2018;12(2):733-49. https://doi.org/10.22207/JPAM.12.2.34
  8. Pramanik P, Goswami AJ, Ghosh S, Kalita C. An indigenous strain of potassium?solubilizing bacteria Bacillus pseudomycoides enhanced potassium uptake in tea plants by increasing potassium availability in the mica waste?treated soil of North?east India. J Appl Microbiol. 2019;126(1):215-22. https://doi.org/10.1111/jam.14130
  9. Siva M, Sreeja SJ, Thara SS, Heera G, Anith KN. Screening and evaluation of bacterial endophytes of cowpea [Vigna unguiculata (L.) Walp.] for plant growth promotion and bio-control potential. Plant Sci Today. 2024;11(2):44-57. https://doi.org/10.14719/pst.2600
  10. Mhatre PH, Karthik C, Kadirvelu K, Divya KL, Venkatasalam EP, Srinivasan S, et al. Plant growth promoting rhizobacteria (PGPR): A potential alternative tool for nematodes bio-control. Biocatal Agric Biotechnol. 2019;17:119-28. https://doi.org/10.1016/j.bcab.2018.11.009
  11. Benaissa A. Plant growth promoting rhizobacteria a review. Alger J Environ Sci Technol. 2019;5(1):873-880.
  12. Rochlani A, Dalwani A, Shaikh N, Shaikh N, Sharma S, Saraf M. Plant growth promoting rhizobacteria as biofertilizers: application in agricultural sustainability. Acta Sci Microbiol. 2022;5(4):12-21. https://doi.org/10.31080/ASMI.2022.05.1028
  13. Sharma S, Rathod ZR, Jain R, Goswami D, Saraf M. Strategies to evaluate microbial consortia for mitigating abiotic stress in plants. In: Maheshwari DK, Dheeman S, editors. Sustainable agrobiology: design and development of microbial consortia. Vol. 43. Singapore: Springer; 2023. p. 177-203. https://doi.org/10.1007/978-981-19-9570-5_9
  14. Gupta S, Kaushal R, Spehia RS, Pathania SS, Sharma V. Productivity of capsicum influenced by conjoint application of isolated indigenous PGPR and chemical fertilizers. J Plant Nutr. 2017;40(7):921-7. https://doi.org/10.1080/01904167.2015.1093139
  15. Attia MS, El-Sayyad GS, Abd Elkodous M, El-Batal AI. The effective antagonistic potential of plant growth-promoting rhizobacteria against Alternaria solani-causing early blight disease in tomato plant. Sci Hortic. 2020;266:109289. https://doi.org/10.1016/j.scienta.2020.109289
  16. Vinodkumar S, Indumathi T, Nakkeeran S. Trichoderma asperellum (NVTA2) as a potential antagonist for the management of stem rot in carnation under protected cultivation. Biol Control. 2017;113:58-64. https://doi.org/10.1016/j.biocontrol.2017.07.001
  17. Bettiol W, Pinto ZV, Silva JC, Forner C, Faria MR, Pacifico MG, et al. Produtos comerciais à base de Trichoderma; 2019:45.
  18. Harman GE, Jin X, Stasz TE, Peruzzotti G, Leopold AC, Taylor AG. Production of conidial biomass of Trichoderma harzianum for biological control. Biol Control. 1991 Jun 1;1(1):23-8. https://doi.org/10.1016/1049-9644(91)90097-J
  19. Ahluwalia V, Kumar J, Rana VS, Sati OP, Walia S. Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity. Nat Prod Res. 2015;29(10):914-20. https://doi.org/10.1080/14786419.2014.958739
  20. El-Benawy NM, Abdel-Fattah GM, Ghoneem KM, Shabana YM. Antimicrobial activities of Trichoderma atroviride against common bean seed-borne Macrophomina phaseolina and Rhizoctonia solani. Egyptian J Basic Appl Sci. 2020;7(1):267-80. https://doi.org/10.1080/2314808X.2020.1809849
  21. Panth M, Hassler SC, Baysal-Gurel F. Methods for management of soilborne diseases in crop production. Agriculture. 2020;10(1):16. https://doi.org/10.3390/agriculture10010016
  22. Parewa HP, Yadav J, Rakshit A. Effect of fertilizer levels, FYM and bioinoculants on soil properties in inceptisol of Varanasi, Uttar Pradesh, India. Int J Environ Agric Biotechnol. 2014;7(3):517-25. http://dx.doi.org/10.5958/2230-732X.2014.01356.4
  23. Kavitha K, Mathiyazhagan S, Senthilvel V, Nakkeeran S, Chandrasekar G. Development of bioformulations of antagonistic bacteria for the management of damping off of Chilli (Capsicum annuum L). Arch Phytopathol Plant Prot. 2005;38(1):19-30. https://doi.org/10.1080/03235400400008382
  24. Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, et al. Enhanced top soil carbon stocks under organic farming. Proc Natl Acad Sci. 2012.30;109(44):18226-31. https://doi.org/10.1073/pnas.1209429109
  25. Supraja G, Vidya kittali. Wastage of fresh fruit and vegetables at retail outlets and households at Bangalore. Int J Creat Res Thoughts. 2023;11(1):192-9.
  26. Sharma L, Shrivastava P. Utility of Trichoderma amended compost to manage soil borne fungal diseases of vegetable crops in Kota district of Rajasthan (India). Asian J Adv Agric Res. 2022;20(4):17-22. https://doi.org/10.9734/AJAAR/2022/v20i4404
  27. Zou F, Tan C, Zhang B, Wu W, Shang N. The valorization of banana by-products: nutritional composition, bioactivities, applications and future development. Foods. 2022;11(20):3170. https://doi.org/10.3390/foods11203170
  28. Raj RS, Preethy HA, Rex KG. Development of banana peel powder as organic carrier based bioformulation and determination of its plant growth promoting efficacy in rice Cr100g. J Pure Appl Microbiol. 2021;15(3):1279-90. https://doi.org/10.22207/JPAM.15.3.18
  29. del Carmen Rivera-Cruz M, Narcía AT, Ballona GC, Kohler J, Caravaca F, Roldan A. Poultry manure and banana waste are effective biofertilizer carriers for promoting plant growth and soil sustainability in banana crops. Soil Biol Biochem. 2008;40(12):3092-5. https://doi.org/10.1016/j.soilbio.2008.09.003
  30. Hassan MK. Enhancing plant growth, drought stress tolerance and biological control capacities of PGPR strains with exogenous pectin-rich amendments [PhD dissertation]. Auburn (AL): Auburn University; 2020. Available from: https://etd.auburn.edu/handle/10415/7248
  31. Princy T, Balamurugan A, Jayanthi R, Nepolean P, Mareeswaran J, Kuberan T, et al. Studies on mass multiplication and shelf life of biofertilizers formulations used in tea. Am Eurasian J Agric Environ Sci. 2014;14(6):580-3. https://doi.org/10.5829/idosi.aejaes.2014.14.06.12372
  32. Simon S. Agro-based waste products as a substrate for mass production of Trichoderma spp. J Agric Sci. 2011;3(4):168. https://doi.org/10.5539/jas.v3n4p168
  33. Smoli?ska U, Kowalska B, Kowalczyk W, Szczech M, Murgrabia A. Eradication of Sclerotinia sclerotiorum sclerotia from soil using organic waste materials as Trichoderma fungi carriers. J Hort Res. 2016;24(1):101-10. https://doi.org/10.1515/johr-2016-0012
  34. De los Santos-Villalobos S, Hernández-Rodríguez LE, Villaseñor-Ortega F, Peña-Cabriales JJ. Production of Trichoderma asperellum T8a spores by a “home-made” solid-state fermentation of mango industrial wastes. Bioresources. 2012;7(4).
  35. Prathibha V, Sharadraj K, Nidhina K, Hegde V. Evaluation of locally available substrates for mass production of Trichoderma. J Lant Crops. 2015;43(2):168-70.
  36. Sriram S, Palanna KB, Ramanujam B. Effect of chitin on the shelf-life of Trichoderma harzianum in talc formulation. Indian J Agric Res. 2010;80(10):930.
  37. Hasan ZA, Mohd Zainudin NA, Aris A, Ibrahim MH, Yusof MT. Biocontrol efficacy of Trichoderma asperellum-enriched coconut fibre against Fusarium wilts of cherry tomato. J Appl Microbiol. 2020;129(4):991-1003. https://doi.org/10.1111/jam.14674
  38. Shahid M, Zaidi A, Khan MS, Rizvi A, Saif S, Ahmed B. Recent advances in management strategies of vegetable diseases. In: Zaidi A, Khan M, editors. Microbial strategies for vegetable production. Vol. 19. Springer, Cham; 2017. https://doi.org/10.1007/978-3-319-54401-4_9
  39. Bolo P, Mucheru-Muna MW, Mwirichia RK, Kinyua M, Ayaga G, Kihara J. Influence of farmyard manure application on potential zinc solubilizing microbial species abundance in a ferralsol of Western Kenya. Agriculture. 2023;13(12):2217. https://doi.org/10.3390/agriculture13122217
  40. Singh K, Kaur J, Gandhi N. Effect of Azotobacter, FYM (Farmyard manure) and PSB (Phosphorus solubilizing bacteria) on the yield and yield attributing characters on pearl millet (Pennisetum glaucum). J Pharmacogn Phytochem. 2019;8(1S):505-7.
  41. Singh G, Sekhon HS, Ram H, Sharma P. Effect of farmyard manure, phosphorus and phosphate solubilizing bacteria on nodulation, growth and yield of kabuli chickpea. J Food Legume. 2010;23(3&4):226-9.
  42. Sakthivel K, Manigundan K, Gautam RK, Singh PK, Balamurugan A, Kumar A, et al. Microbe-enriched farm yard manure (MFYM) approach for the suppression of Ralstonia solanacearum Yabuuchi (Smith) inciting bacterial wilt disease in eggplant (Solanum melongena L.). Plant Soil. 2023;491(1):303-15. https://doi.org/10.1007/s11104-023-06119-y
  43. Abdirahman SH, Joseph MJ, Kimurto PK, Nyongesa M. Efficacy of biofertilizers and farmyard manure in management of late blight (Phytophthora infestans) and yield of potato. World. 2023;11(2):59-67. https://doi.org/10.12691/wjar-11-2-4
  44. Jaipaul SS, Sharma S, Kumar Dixit A, Sharma AK. Growth and yield of capsicum (Capsicum annum) and garden pea (Pisum sativum) as influenced by organic manures and biofertilizers. Indian J Agric Res. 2011;81(7):637.
  45. Lehmann J, Amonette JE, Roberts K, Hillel D, Rosenzweig C. Role of biochar in mitigation of climate change. Climate Change and Agroecosystems: Impacts, Adaptation and Mitigation. 2010:343-63. https://doi.org/10.1142/9781848166561_0018
  46. Pandit NR, Schmidt HP, Mulder J, Hale SE, Husson O, Cornelissen G. Nutrient effect of various composting methods with and without biochar on soil fertility and maize growth. Arch Agron Soil Sci. 2020;66(2):250-65. https://doi.org/10.1080/03650340.2019.1610168
  47. Liao F, Yang L, Li Q, Xue J, Li Y, Huang D, et al. Effect of biochar on growth, photosynthetic characteristics and nutrient distribution in sugarcane. Sugar Tech. 2019;21:289-95. https://doi.org/10.1007/s12355-018-0663-6
  48. Moradi S, Rasouli-Sadaghiani MH, Sepehr E, Khodaverdiloo H, Barin M. Soil nutrients status affected by simple and enriched biochar application under salinity conditions. Environ Monit Assess. 2019;191:1-3. https://doi.org/10.1007/s10661-019-7393-4
  49. Song X, Li H, Song J, Chen W, Shi L. Biochar/vermicompost promotes Hybrid Pennisetum plant growth and soil enzyme activity in saline soils. Plant Physiol Biochem. 2022;183:96-110. https://doi.org/10.1016/j.plaphy.2022.05.008
  50. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. Biochar effects on soil biota–a review. Soil Biol Biochem. 2011;43(9):1812-36. https://doi.org/10.1016/j.soilbio.2011.04.022
  51. Hafez EM, Alsohim AS, Farig M, Omara AE, Rashwan E, Kamara MM. Synergistic effect of biochar and plant growth promoting rhizobacteria on alleviation of water deficit in rice plants under salt-affected soil. Agronomy. 2019;9(12):847. https://doi.org/10.3390/agronomy9120847
  52. Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol. 2016;46(4):406-33. https://doi.org/10.1080/10643389.2015.1096880
  53. Egamberdieva D, Reckling M, Wirth S. Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. Eur J Soil Biol. 2017;78:38-42. https://doi.org/10.1016/j.ejsobi.2016.11.007
  54. Kavita Budania KB, Janardan Yadav JY. Effects of PGPR blended biochar and different levels of phosphorus on yield and nutrient uptake by chickpea. Ann Agri Bio Res. 2014;19(3):408-12.
  55. Saxena J, Rana G, Pandey M. Impact of addition of biochar along with Bacillus sp. on growth and yield of French beans. Sci Hortic. 2013;162:351-6. https://doi.org/10.1016/j.scienta.2013.08.002
  56. Ijaz M, Tahir M, Shahid M, Ul-Allah S, Sattar A, Sher A, et al. Combined application of biochar and PGPR consortia for sustainable production of wheat under semiarid conditions with a reduced dose of synthetic fertilizer. Braz J Microbiol. 2019;50:449-58. https://doi.org/10.1007/s42770-019-00043-z
  57. Danish S, Zafar-ul-Hye M, Mohsin F, Hussain M. ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS One. 202;15(4):e0230615. https://doi.org/10.1371/journal.pone.0230615
  58. Akhter A, Hage-Ahmed K, Soja G, Steinkellner S. Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil. Plant Soil. 2016;406:425-40. https://doi.org/10.1007/s11104-016-2948-4
  59. Meller Harel Y, Elad Y, Rav-David D, Borenstein M, Shulchani R, Lew B, et al. Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil. 2012;357:245-57. https://doi.org/10.1007/s11104-012-1129-3
  60. Jaiswal AK, Elad Y, Graber ER, Frenkel O. Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biol Biochem. 2014;69:110-8. https://doi.org/10.1016/j.soilbio.2013.10.051
  61. Mehari ZH, Elad Y, Rav-David D, Graber ER, Meller Harel Y. Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant Soil. 2015;395:31-44. https://doi.org/10.1007/s11104-015-2445-1
  62. Rasool M, Akhter A, Soja G, Haider MS. Role of biochar, compost and plant growth promoting rhizobacteria in the management of tomato early blight disease. Sci Rep. 2021;11(1):6092. https://doi.org/10.1038/s41598-021-85633-4
  63. Chen W, Wu Z, Liu C, Zhang Z, Liu X. Biochar combined with Bacillus subtilis SL-44 as an eco-friendly strategy to improve soil fertility, reduce Fusarium wilt and promote radish growth. Ecotoxicol Environ Saf. 2023;251:114509. https://doi.org/10.1016/j.ecoenv.2023.114509
  64. Jackson AM, Whipps JM, Lynch JM. Production, delivery systems and survival in soil of four fungi with disease biocontrol potential. Enzyme Microb Technol. 1991;13(8):636-42. https://doi.org/10.1016/0141-0229(91)90077-N
  65. Singh A, Singh AP, Singh SK, Rai S, Kumar D. Impact of addition of biochar along with PGPR on rice yield, availability of nutrients and their uptake in alluvial soil. J Pure Appl Microbiol. 2016;10(3): 2181-8.
  66. Fan H, Yao M, Wang H, Zhao D, Zhu X, Wang Y, et al. Isolation and effect of Trichoderma citrinoviride Snef1910 for the biological control of root-knot nematode, Meloidogyne incognita. BMC Microbiology. 2020;20:299. https://doi.org/10.1186/s12866-020-01984-4
  67. Zhang X, Wang Y, Han X, Gou J, Li W, Zhang C. A novel bio-fertilizer produced by prickly ash seeds with biochar addition induces soil suppressiveness against black shank disease on tobacco. Appl Sci. 2021;11(16):7261. https://doi.org/10.3390/app11167261
  68. Arshad U, Azeem F, Mustafa G, Bakhsh A, Toktay H, McGiffen M, et al. Combined application of biochar and biocontrol agents enhances plant growth and activates resistance against Meloidogyne incognita in tomato. Gesunde Pflanzen. 2021;73(4):591-601. https://doi.org/10.1007/s10343-021-00580-4
  69. Abou Fayssal S, Yordanova MH. Effect of substrate temperature and stages duration on recycling of agro-industrial residues through Pleurotus ostreatus production. Int J Recycl Org Waste Agri. 2023;12(4). https://doi.org/10.30486/ijrowa.2023.1964536.1513
  70. Barshteyn V, Krupodorova T. Utilization of agro-industrial waste by higher mushrooms: modern view and trends. J Microbiol Biotechnol Food Sci. 2016;5(6). https://doi.org/10.15414/jmbfs.2016.5.6.563-577
  71. Å iri? I, Eid EM, Taher MA, El-Morsy MH, Osman HE, Kumar P, et al. Combined use of spent mushroom substrate biochar and PGPR improves growth, yield and biochemical response of cauliflower (Brassica oleracea var. botrytis): a preliminary study on greenhouse cultivation. Horticulturae. 2022;8(9):830. https://doi.org/10.3390/horticulturae8090830
  72. Larkin RP, Fravel DR. Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis. 1998;82(9):1022-8. https://doi.org/10.1094/PDIS.1998.82.9.1022
  73. Kwak AM, Min KJ, Lee SY, Kang HW. Water extract from spent mushroom substrate of Hericium erinaceus suppresses bacterial wilt disease of tomato. Mycobiology. 2015;43(3):311-8. https://doi.org/10.5941/MYCO.2015.43.3.311
  74. Arathikrishna VK. Potential of fortified spent mushroom substrate for the management of soil borne diseases of tomato. Plant Pathology, PhD [dissertation]. Vellanikkara (IN): College of Horticulture; 2015.
  75. Wang HW, Zhu YX, Xu M, Cai XY, Tian F. Co-application of spent mushroom substrate and PGPR alleviates tomato continuous cropping obstacle by regulating soil microbial properties. Rhizosphere. 2022;23:100563. https://doi.org/10.1016/j.rhisph.2022.100563
  76. Zeng G, Liu Z, Guo Z, He J, Ye Y, Xu H, et al. Compost with spent mushroom substrate and chicken manure enhances rice seedling quality and reduces soil-borne pathogens. Environ Sci Pollut Res. 2023;30(31):77743-56. https://doi.org/10.1007/s11356-023-27681-z
  77. Roshna S. Potential of spent mushroom substrate for the management of nursery disease of black pepper. Plant Pathology. PhD [dissertation]. Vellanikkara (IN): College of Horticulture; 2013.
  78. Singh G, Tiwari A, Gupta A, Kumar A, Hariprasad P, Sharma S. Bioformulation development via valorizing silica-rich spent mushroom substrate with Trichoderma asperellum for plant nutrient and disease management. J Environ Manage 2021;297:113278. https://doi.org/10.1016/j.jenvman.2021.113278
  79. Yu YY, Li SM, Qiu JP, Li JG, Luo YM, Guo JH. Combination of agricultural waste compost and biofertilizer improves yield and enhances the sustainability of a pepper field. J Plant Nutr Soil Sci. 2019;182(4):560-9. https://doi.org/10.1002/jpln.201800223
  80. Rai RB, Dhama K, Chakraborty S, Ram RA, Balvir Singh BS, Tiwari R, et al. Comparative evaluation of crop productivity and profitability under traditional farming and integrated farming system in Northern plains of India. South Asian J Exp Biol. 2013;3(5):220-5.
  81. Tagoe SO, Horiuchi T, Matsui T. Effects of carbonized and dried chicken manures on the growth, yield and N content of soybean. Plant soil. 2008;306:211-20. https://doi.org/10.1007/s11104-008-9573-9
  82. Boyhan GE, Hicks RJ, Torrance RL, Riner CM, Hill CR. Evaluation of poultry litter and organic fertilizer rate and source for production of organic short-day onions. Hort Technol. 2010;20(2):304-7. https://doi.org/10.21273/HORTTECH.20.2.304
  83. Srivastava PK, Gupta M, Upadhyay RK, Sharma S, Shikha, Singh N, et al. Effects of combined application of vermicompost and mineral fertilizer on the growth of Allium cepa L. and soil fertility. J Plant Nutr Soil Sci. 2012;175(1):101-7. https://doi.org/10.1002/jpln.201000390
  84. Dani U, Budiarti A, Wijaya A. Application of chicken manure dosage and plant growth promoting rhizobacteria on the growth and yield of shallot plants (Allium ascalonicum L.). IOP PublishingConference Series. Earth Environ Sci. 2021;748(1):012044.
  85. Ali AA, El-Ashry RM, Aioub AA. Animal manure rhizobacteria co-fertilization suppresses phytonematodes and enhances plant production: evidence from field and greenhouse. J Plant Dis Prot. 2022;129(1):155-69. https://doi.org/10.1007/s41348-021-00529-9
  86. Chen S, Qi G, Ma G, Zhao X. Biochar amendment controlled bacterial wilt through changing soil chemical properties and microbial community. Microbiol Res. 2020;231:126373. https://doi.org/10.1016/j.micres.2019.126373
  87. Thangavelu R, Palaniswami A, Velazhahan R. Mass production of Trichoderma harzianum for managing Fusarium wilt of banana. Agric Ecosyst Environ. 2004;103(1):259-63. https://doi.org/10.1016/j.agee.2003.09.026
  88. Sriram S, Savitha M, Ramanujam B. Trichoderma-enriched coco-peat for the management of Phytophthora and Fusarium diseases of chilli and tomato in nurseries. J Biol Control. 2010;24:311-6.
  89. Liton MJ, Bhuiyan MK, Jannat R, Ahmed JU, Rahman MT, Rubayet MT. Efficacy of Trichoderma-fortified compost in controlling soil-borne diseases of bush bean (Phaseolus vulgaris L.) and sustainable crop production. Adv Agric Sci. 2019;7(2):123-36.

Downloads

Download data is not yet available.