Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Evaluating the impact of nano-zinc and nitrogen fertilizers on growth, yield, nutritional quality and economics of wheat (Triticum aestivum L.) cultivation in Western Uttar Pradesh

DOI
https://doi.org/10.14719/pst.8139
Submitted
8 March 2025
Published
27-04-2025
Versions

Abstract

Wheat (Triticum aestivum L.) is one of the world’s most staple crops, but its productivity is increasingly constrained by widespread deficiencies in soil nutrients, particularly zinc (Zn) and nitrogen (N). This study evaluates the effectiveness of nano-fertilizers (NFs) in addressing these deficiencies under field conditions in Western Uttar Pradesh (WUP), India. Approximately, 50 % of cultivated soil in India, particularly in the Indo-Gangetic Plain, including WUP, suffers from Zn and N deficiencies. The experiment tested the foliar application of Nano-Urea (N-U) and Nano-zinc (N-Zn) and their interactions with various recommended doses of fertilizers (RDF) combinations. The combination of two sprays of N-U and N-Zn with 100 % RDF (T12) resulted in the highest plant height (105.93 cm), number of tillers (317.8 m-2), CGR (22.315 g m-2 day-1) and grain yield (5.59 t ha-1) among all treatments. Moreover, this treatment increased Zn concentrations in grains (34.89 mg kg-1) and straw (9.17 mg kg-1), ensuring higher nutritional quality compared other treatments. Economic analysis showed that T12 provided the highest net returns of ?104579 ha-1 and B:C ratio 3.29, making it the most economically viable option. However, the 100 % RDF (T2) treatment also showed promise as a sustainable alternative, requiring less N input while maintaining productive yields and economic viability. Adopting the superior treatment in Zn- and N-deficient zones could increase yields up to 15 %. The finding demonstrates the synergy between N-U and N-Zn in enhancing nutrient use efficiency, crop productivity and profitability, promoting a sustainable approach for wheat cultivation for nutrient-deficient soils of the Indo-Gangetic Plain.

References

  1. Government of Italy. FAO Statistical Pocket Book. Food and Agriculture Organization. Rome, Italy; 2015. https://openknowledge.fao.org/server/api/core/bitstreams/9a8e88e3-5814-49c9-b350-1d68a745ca6a/content
  2. Shukla A, Kumar M, Verma SK, Shukla A. Effect of tillage and precision nitrogen management practices on N uptake and nutrient use efficiency (NUE) in wheat in Western Uttar Pradesh, India. Int J Plant Soil Sci. 2023;35(22):801-8. https://doi.org/10.9734/IJPSS/2023/v35i224191
  3. Government of Italy. Global Information and Early Warning System GIEWS (US). Food and Agriculture Organization. Rome, Italy; 2025. https://www.fao.org/giews/countrybrief/country.jsp?code=IND
  4. Government of Italy. Crop Prospects and Food Situation - Quarterly Global Report No. 4, December 2021. Food and Agriculture Organization. Rome, Italy;2021. https://doi.org/10.4060/cb7877en
  5. Singh SK, Kumar S, Kashyap PL, Sendhil R, Gupta OP. Wheat. In: Trajectory of 75 years of Indian agriculture after independence. Singapore: Springer Nature; 2023. p. 137-62. https://doi.org/10.1007/978-981-19-7997-2
  6. Tewatia RK, Chanda TK. Trends in fertilizer nitrogen production and consumption in India. In: The Indian nitrogen assessment. Elsevier; 2017. p. 45-56. https://doi.org/10.1016/B978-0-12-811836-8.00004-5
  7. Arvind KS, Sanjib KB, Chandra P, Ajay T, Ashok KP, Brahma SD, et al. Deficiency of phyto-available sulphur, zinc, boron, iron, copper and manganese in soils of India. Sci Rep. 2021;11(1):19760. https://doi.org/10.1038/s41598-021-99040-2
  8. Khush GS. Challenges for meeting the global food and nutrient needs in the new millennium. Proc Nutr Soc. 2001;60(1):15-26. https://doi.org/10.1079/PNS200075
  9. Singh MV. Micronutrient deficiencies in crops and soils in India. In: Micronutrient deficiencies in global crop production. Netherlands: Springer; 2008. p. 93-125. https://doi.org/10.1007/978-1-4020-6860-7_4
  10. Nandal V, Solanki M. The Zn as a vital micronutrient in plants. J Microbiol Biotechnol Food Sci. 2021;11(3):e4026. https://doi.org/10.15414/jmbfs.4026
  11. Yilmaz H, Yilmaz A. Hidden hunger in the age of abundance: the nutritional pitfalls of modern staple crops. Food Sci Nutr. 2025;13(2):e4610. https://doi.org/10.1002/fsn3.4610
  12. Khan ST, Malik A, Alwarthan A, Mohammed RF. The enormity of the zinc deficiency problem and available solutions; an overview. Arab J Chem. 2022;15(3):103668. https://doi.org/10.1016/j.arabjc.2021.103668
  13. Ladha JK, Jat ML, Stirling CM, Debashs C, Prajal P, Timothy JK, et al. Achieving the sustainable development goals in agriculture: The crucial role of nitrogen in cereal-based systems. Adv Agron. 2020;163:39-116. https://doi.org/10.1016/bs.agron.2020.05.006
  14. Yadav MR, Kumar R, Parihar CM, Yadav RK, Jat SL, Ram H, et al. Strategies for improving nitrogen use efficiency: A review. Agric Rev. 2017;38(1):29-40. https://doi.org/10.18805/ag.v0iOF.7306
  15. Srivastava S, Opoku A. Nitrogen use to improve sustainable yields in agricultural systems. Front Sustain Food Syst. 2023;7:1276561. https://doi.org/10.3389/fsufs.2023.1276561
  16. Prasad R, Bhattacharyya A, Nguyen QD. Nanotechnology in sustainable agriculture: recent developments, challenges and perspectives. Front Microbiol. 2017;8:1014. https://doi.org/10.3389/fmicb.2017.01014
  17. Madlala NC, Khanyile N, Masenya A. Examining the correlation between the inorganic nano-fertilizer physical properties and their impact on crop performance and nutrient uptake efficiency. Nanomaterials. 2024;14(15):1263. https://doi.org/10.3390/nano14151263
  18. Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J. Nano-fertilizers and their smart delivery system. In: Nanotechnologies in food and agriculture. Springer; 2015. p. 81-101. https://doi.org/10.1007/978-3-319-14024-7_4
  19. Iqbal M, Umar S, Mahmood U. Nano-fertilization to enhance nutrient use efficiency and productivity of crop plants. In: Nanomaterials and plant potential. Springer; 2019. p. 473-505. https://doi.org/10.1007/978-3-030-05569-1_19
  20. Verma, K Krishna, Song XP, Degu HD, Guo DJ, Joshi A, Huang HR, et al. Recent advances in nitrogen and nano-nitrogen fertilizers for sustainable crop production: a mini-review. Chem Biol Technol Agric. 2023;10(1):111. https://doi.org/10.1186/s40538-023-00488-3
  21. Duff H, Hegedus PB, Loewen S, Bass T, Maxwell BD. Precision agroecology. Sustainability. 2022;14(1):106. https://doi.org/10.3390/su14010106
  22. Sekhon BS. Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl. 2014;7:31–53. https://doi.org/10.2147/NSA.S39406
  23. Sunil C, Kadam PV, Kanavi GBJ, Onte S, Salimath SB, Jeevan HR, et al. Comparative assessment of nano nitrogen and nano zinc nutrition on growth, yield and profitability of chilli (Capsicum annuum L). J Plant Nutr. 2024;47(12):1916-30. https://doi.org/10.1080/01904167.2024.2325949
  24. Arora PK, Tripathi S, Omar RA, Chauhan P, Sinhal VK, Singh A, et al. Next-generation fertilizers: the impact of bionanofertilizers on sustainable agriculture. Microb Cell Fact. 2024;23:254. https://doi.org/10.1186/s12934-024-02528-5
  25. Wani SP, Jakkula VS, Singh D. Doubling Farmers’ Income: KISAN-MITrA. ICRISAT; 2017.
  26. Sharma B, Tiwari S, Kumawat KC, Cardinale M. Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: Potentiality and their limitations. Sci Total Environ. 2023;860:160476. https://doi.org/10.1016/j.scitotenv.2022.160476
  27. Saurabh K, Prakash V, Dubey AK, Ghosh SG, Kumari A, Sundaram PK, et al. Enhancing sustainability in agriculture with nano fertilizers. Discov Appl Sci. 2024;6:559. https://doi.org/10.1007/s42452-024-06267-5
  28. Babu S, Singh R, Yadav D, Rathore SS, Raj R, Avasthe R, et al. Nano fertilizers for agricultural and environmental sustainability. Chemosphere. 2022;292:133451. https://doi.org/10.1016/j.chemosphere.2021.133451
  29. Zhang H, Zheng T, Wang Y, Li T, Chi Q. Multifaceted impacts of nanoparticles on plant nutrient absorption and soil microbial communities. Front Plant Sci. 2024;15:1497006. https://doi.org/10.3389/fpls.2024.1497006
  30. Khanna K, Kohli SK, Handa N, Kaur H, OhriP, Bhardwaj R, et al. Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. Ecotoxicol Environ Saf. 2021;222:112459. https://doi.org/10.1016/j.ecoenv.2021.112459
  31. Lin D, Tian X, Wu F, Xing B. Fate and transport of engineered nanomaterials in the environment. J Environ Qual. 2010;39(6):1896-908. https://doi.org/10.2134/jeq2009.0423
  32. Rawat S, Pullagurala VLR, Adisa IO, Wang Y, Videa JRP, Torresdey JL, et al. Factors affecting fate and transport of engineered nanomaterials in terrestrial environments. Curr Opin Environ Sci Health. 2018;6:47-53. https://doi.org/10.1016/j.coesh.2018.07.014
  33. Yadav A, Yadav K, Abd-Elsalam KA. Exploring the potential of nano fertilizers for a sustainable agriculture. Plant Nano Biol. 2023;5:100044. https://doi.org/10.1016/j.plana.2023.100044
  34. Lindsay WL, Norvell WA. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J. 1978;42(3):421-8. https://doi.org/10.2136/sssaj1978.03615995004200030009x
  35. Government of India. Annual Report (2011-2012). ICAR-Directorate of Wheat Research (Indian Institute of Wheat and Barley Research). Karnal, India; 2012.
  36. Indian Express. New blockbuster wheat from IARI; 2022. Available from: https://indianexpress.com/article/india/new-blockbuster-wheat-from-iari-6007865/
  37. Hasnidawani JN, Azlina HN, Norita H, Bannia NN, Ratim S, Ali ES. Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem. 2016;19:211-6. https://doi.org/10.1016/j.proche.2016.03.095
  38. Kistler SS. Coherent expanded aerogels and jellies. Nature. 1931;127(3211):741. https://doi.org/10.1038/127741a0
  39. Leal JFL, Ferreira LJdS, Carvalho GS, Simoes JAS, Souza FR, Langaro AC, et al. Interaction between ACCase inhibitors and broadleaf herbicides to the control of Italian ryegrass. J Agric Sci Eng. 2021;4(4):224-33. https://doi.org/10.26655/JRWEEDSCI.2021.4.3
  40. Gomez KA, Gomez AA. Statistical procedures for agricultural research. Wiley; 1984.
  41. Singh BV, Shakti S, Shikhar V, Sachin KY, Jyotiprakash M, Sweekruta M, et al, Effect of Nano-nutrient on growth attributes, yield, Zn content and uptake in wheat (Triticum aestivum L.). Int J Environ Clim Change. 2022;12(11):2028-36. https://doi.org/10.9734/IJECC/2022/v12i1131193
  42. Jalal A, Mortinho ES, Oliveira CES, Fernandes GC, Junior EF, Lima BH, et al. Nano-zinc and plant growth-promoting bacteria is a sustainable alternative for improving productivity and agronomic biofortification of common bean. Chem Biol Technol Agric. 2023;10:1-17. https://doi.org/10.1186/s40538-023-00440-5
  43. Chattha M. U, Tahira A, Imran K, Muhammad N, Muqarrab A, Muhammad BC, et al. Mulberry based zinc nano-particles mitigate salinity induced toxic effects and improve the grain yield and zinc bio-fortification of wheat by improving antioxidant activities, photosynthetic performance and accumulation of osmolytes and hormones. Front Plant Sci. 2022;13:920570. https://doi.org/10.3389/fpls.2022.920570
  44. Akram MA, Depar N, Memon MY. Synergistic use of nitrogen and zinc to bio-fortify zinc in wheat grains. Eurasian J Soil Sci. 2017;6(4):319-26. https://doi.org/10.18393/ejss.306698
  45. Pudhuvai B, Koul B, Das R, Shah MP. Nano-fertilizers (NFs) for resurgence in nutrient use efficiency (NUE): a sustainable agricultural strategy. Curr Pollut Rep. 2025;11:1. https://doi.org/10.1007/s40726-024-00331-9
  46. Zhang S, Shen T, Yang Y, Li YC, Wan Y, Zhang M, et al. Controlled-release urea reduced nitrogen leaching and improved nitrogen use efficiency and yield of direct-seeded rice. J Environ Manage. 2018;220:191-7. https://doi.org/10.1016/j.jenvman.2018.05.010
  47. Singh BV, Rana NS, Sharma K, Verma A, Rai AK, Singh SK, et al. Impact of nano-fertilizers on productivity and profitability of wheat (Triticum aestivum L). Plant Cell Biotechnol Mol Biol. 2024;25(1-2):69-76. https://doi.org/10.56557/PCBMB/2024/v25i1-28602
  48. Channab BE, El Idrissi A, Ammar A, Dardari O, Marrane SE, Gharrak A, et al. Recent advances in nano-fertilizers: synthesis, crop yield impact and economic analysis. Nanoscale. 2024;16:4484-513. https://doi.org/10.1039/D3NR05012B
  49. Ain ul Q, Hussain HA, Zhang Q, Rasheed A, Imran A, Hussain S, et al. Use of nano-fertilizers to improve the nutrient use efficiencies in plants. In: Sustainable plant nutrition. Academic Press; 2023. p. 299-321. https://doi.org/10.1016/B978-0-443-18675-2.00013-4
  50. Jalal A, Oliveira CES, Fernandes GC, Silva EC, Costa KN, Souza JS, et al. Integrated use of plant growth-promoting bacteria and nano-zinc foliar spray is a sustainable approach for wheat biofortification, yield and zinc use efficiency. Front Plant Sci. 2023;14:1146808. https://doi.org/10.3389/fpls.2023.1146808
  51. Kumar Y, Singh T, Raliya R, Tiwari KN. Nano fertilizers for sustainable crop production, higher nutrient use efficiency and enhanced profitability. Indian J Fertil. 2021;17(11):1206-14.
  52. Wahab A, Muhammad M, Ullah S, Abdi G, Shah GM, Zaman W, et al. Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety and sustainability. Sci Total Environ. 2024;926:171862. https://doi.org/10.1016/j.scitotenv.2024.171862
  53. Kah M, Tufenkji N, White JC. Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol. 2019;14(6):532-40. https://doi.org/10.1038/s41565-019-0439-5
  54. Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH. Heavy metals in food crops: Health risks, fate, mechanisms and management. Environ Int. 2019;125:365-85. https://doi.org/10.1016/j.envint.2019.01.067
  55. Ge Y, Schimel JP, Holden PA. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol. 2011;45(4):1659-64. https://doi.org/10.1021/es103040t
  56. Park HG, Yeo, MK. Nanomaterial regulatory policy for human health and environment. Mol Cell Toxicol. 2016;12:223-36. https://doi.org/10.1007/s13273-016-0027-9
  57. Doak SH, Andreoli C, Burgum MJ, Chaudhry Q, Bleeker EAJ, Bossa C, et al Current status and future challenges of genotoxicity OECD Test Guidelines for nanomaterials: a workshop report. Mutagenesis. 2023;38(4):183-91. https://doi.org/10.1093/mutage/gead017
  58. Okeke ES, Ezeorba TPC, Mao G, Chan Y, Feng W, We X. Nano-enabled agrochemicals/materials: Potential human health impact, risk assessment, management strategies and future prospects. Environ Pollut. 2022;295:118722. https://doi.org/10.1016/j.envpol.2021.118722
  59. Kalwani M, Chakdar H, Srivastava A, Pabbi S, Shukla P. Effects of nanofertilizers on soil and plant-associated microbial communities: Emerging trends and perspectives. Chemosphere. 2022;287:132107. https://doi.org/10.1016/j.chemosphere.2021.132107

Downloads

Download data is not yet available.