Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 2 (2025)

Papaya grafting: Advance, mechanisms and future prospects

DOI
https://doi.org/10.14719/pst.8154
Submitted
10 March 2025
Published
08-05-2025 — Updated on 19-05-2025
Versions

Abstract

Papaya (Carica papaya L.) is a nutritionally rich and economically significant tropical fruit crop. Despite its importance, papaya cultivation faces challenges such as dioecy, inconsistent seed propagation and environmental influence on sex expression. Grafting has emerged as a viable vegetative propagation technique to overcome these constraints, ensuring uniformity, improved plant vigor and extended economic lifespan. Among various grafting methods, cleft grafting has demonstrated high success rates, producing hermaphrodite plants with desirable traits such as reduced fruiting height and increased productivity. The process involves intricate physiological and molecular mechanisms. These include callus formation, vascular regeneration and hormonal interactions that facilitate graft union success. Cytokinins and gibberellins play a crucial role in lateral shoot development, aiding scion production by mitigating apical dominance. Additionally, molecular studies reveal the movement of RNAs and proteins across graft unions, influencing growth regulation. Despite its advantages, papaya grafting faces challenges like bacterial rot, which can be managed through silicon application and optimized grafting conditions. This review highlights advancements in grafting techniques, emphasizing their role in enhancing propagation efficiency and improving papaya cultivation. Standardizing these techniques could provide sustainable solutions for commercial papaya production, ensuring consistent fruit quality and yield. Future research should focus on optimizing grafting methodologies, exploring resistant rootstocks and understanding genetic interactions and promoting field-level adoption to enhance commercial cultivation.

References

  1. 1. Koul B, Pudhuvai B, Sharma C, Kumar A, Sharma V, Yadav D, et al. Carica papaya L.: a tropical fruit with benefits beyond the tropics. Diversity. 2022;14(8):683. https://doi.org/10.3390/d14080683
  2. 2. Indiastat. Area, Production and Productivity of Papaya in India (2023-2024-3rd Advance Estimates) 2023-2024. Available from: https://www-indiastat-com.elibrarytnau.remotexs.in/table/agriculture/selected-state-wise-area-production-productivity-p/1455632#
  3. 3. Husin F, Ya'akob H, Abd Rashid SN, Shahar S, Soib HH. Cytotoxicity study and antioxidant activity of crude extracts and SPE fractions from Carica papaya leaves. Biocatalysis and Agricultural Biotechnology. 2019;19:101130. https://doi.org/10.1016/j.bcab.2019.101130
  4. 4. Senthilkumar S, Kumar N, Soorianathasundaram K, Kumar PJ. Aspects on asexual propagation in papaya (Carica papaya L.) - a review. Agricultural Reviews. 2014;35(4):307-13. https://doi.org/10.5958/0976-0741.2014.00919.2
  5. 5. Sharma S, Gupta RK, Rana VS, Sankhyan N, Sharma U, Sharma S. Forecasting the future of papaya in india: predicting area and production through autoregressive integrated moving average. Applied Fruit Science. 2024;66(1):183-91. https://doi.org/10.1007/s10341-023-01009-0
  6. 6. Boshra V, Tajul A. Papaya - an innovative raw material for food and pharmaceutical processing industry. Health and the Environment Journal. 2013;4(1):68-75.
  7. 7. Ávila-Hernández JG, del Rosario Cárdenas-Aquino M, Camas-Reyes A, Martínez-Antonio A. Sex determination in papaya: current status and perspectives. Plant Science. 2023;335:111814. https://doi.org/10.1016/j.plantsci.2023.111814
  8. 8. Hernández-Salinas G, Luna-Cavazos M, Soto-Estrada A, García-Pérez E, Pérez-Vázquez A, Córdova-Téllez L. Distribution and eco-geographic characterization of Carica papaya L. native to Mexico. Genetic Resources and Crop Evolution. 2022;69(1):99-116. https://doi.org/10.1007/s10722-021-01207-3
  9. 9. Storey W. Carica papaya. Handbook of flowering. CRC Press; 2019. p. 147-57. https://doi.org/10.1201/9781351072540-23
  10. 10. Babhare U, Singh SK. Regulation of sex expression and flowering in papaya (Carica papaya). Journal of Pharmacognosy and Phytochemistry. 2020;9(6):549-51.
  11. 11. Modi A, Suthar K, Thakkar P, Mankad MC, Kumari S, Narayanan S, et al. Evaluation of sex specific RAPD and SCAR markers linked to papaya (Carica papaya L.). Biocatalysis and Agricultural Biotechnology. 2018;16:271-6. https://doi.org/10.1016/j.bcab.2018.08.004
  12. 12. Ikeuchi M, Sugimoto K, Iwase A. Plant callus: mechanisms of induction and repression. The Plant Cell. 2013;25(9):3159-73. https://doi.org/10.1105/tpc.113.116053
  13. 13. R?ži?ka K, Ursache R, Hejátko J, Helariutta Y. Xylem development-from the cradle to the grave. New Phytologist. 2015;207(3):519-35. https://doi.org/10.1111/nph.13383
  14. 14. Rasool A, Mansoor S, Bhat K, Hassan G, Baba TR, Alyemeni MN, et al. Mechanisms underlying graft union formation and rootstock scion interaction in horticultural plants. Frontiers in Plant Science. 2020;11:590847. https://doi.org/10.3389/fpls.2020.590847
  15. 15. Silva Jd, Rashid Z, Nhut DT, Sivakumar D, Gera A, Souza MT, et al. Papaya (Carica papaya L.) biology and biotechnology. Tree and Forestry Science and Biotechnology. 2007;1(1):47-73.
  16. 16. Kumar PV. Comparative analysis of metabolomics associated with intra-varietal graft of dioecious papaya var. TNAU Papaya CO 8; 2021.
  17. 17. Ramos HCC, Pereira MG, Silva FFd, Viana AP, Ferreguetti GA. Seasonal and genetic influences on sex expression in a backcrossed segregating papaya population. Crop Breeding and Applied Biotechnology. 2011;11:97-105. https://doi.org/10.1590/s1984-70332011000200001
  18. 18. Salinas I, Hueso JJ, Força Baroni D, Cuevas J. Plant growth, yield and fruit size improvements in ‘Alicia’ papaya multiplied by grafting. Plants. 2023;12(5):1189. https://doi.org/10.3390/plants12051189
  19. 19. Hancock W. Grafting male papaw trees. Queensland Agricultural Journal. 1940;54:377-9. https://doi.org/10.1080/03670074.1943.11664351
  20. 20. Airi S, Gill S, Singh S. Clonal propagation of papaya (Carica papaya L.). Journal of. Agriculture Research. 1986;23:237-9.
  21. 21. Van Hong Nguyen VHN, Yen Chung Ruey YC. Rootstock age and grafting season affect graft success and plant growth of papaya (Carica papaya L.) in greenhouse. 2018;78(1). https://doi.org/10.4067/s0718-58392018000100059
  22. 22. Lee J-M, Oda M. Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews-Westport then New York 2002;28:61-124. https://doi.org/10.1002/9780470650851.ch2
  23. 23. Kawaguchi M, Taji A, Backhouse D, Oda M. Anatomy and physiology of graft incompatibility in solanaceous plants. The Journal of Horticultural Science and Biotechnology. 2008;83(5):581-8. https://doi.org/10.1080/14620316.2008.11512427
  24. 24. Allan P, Clark C, Laing M, editors. Grafting papayas (Carica papaya L.). II International Symposium on Papaya 851; 2008. https://doi.org/10.17660/actahortic.2010.851.38
  25. 25. Álvarez-Hernández JC, Castellanos-Ramos JZ, Aguirre-Mancilla CL. Adaptation of a grafting method for Carica papaya based on seedling behavior. HortScience. 2019;54(6):982-7. https://doi.org/10.21273/hortsci13800-18
  26. 26. Chong S, Prabhakaran R, Lee H, editors. An improved technique of propagating ‘Eksotika’ papaya. International Workshop on Tropical and Subtropical Fruits 787;2007. https://doi.org/10.17660/actahortic.2008.787.30
  27. 27. Jimenez H. Injertos entre especies de Carica. Agriculture Tropical. 1957;7(1):33-7.
  28. 28. Schmildt ER, Schmildt O, Alexandre RS, do Amaral JAT, Campostrini E, Ferreguetti GA, et al. Propagação assexuada de mamoeiro. Fruticultura Tropical. 2015:158.
  29. 29. Lee J-M, Kubota C, Tsao S, Bie Z, Echevarria PH, Morra L, et al. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae. 2010;127(2):93-105. https://doi.org/10.1016/j.scienta.2010.08.003
  30. 30. Lange A. Reciprocal grafting of normal and dwarf Solo papaya on growth and yield. HortScience. 1969;4(4):304-6. https://doi.org/10.21273/hortsci.4.4.304
  31. 31. Leonardi C, Romano D, editors. Recent issues on vegetable grafting. XXVI International Horticultural Congress: Issues and Advances in Transplant Production and Stand Establishment Research. ISHS Acta Horticulturae 631;2002. https://doi.org/10.17660/actahortic.2004.631.21
  32. 32. Preece JE. A century of progress with vegetative plant propagation. HortScience. 2003;38(5):1015-25. https://doi.org/10.21273/hortsci.38.5.1015
  33. 33. Allan P, editor. Propogation of ‘Honey Gold’ papayas by cuttings. International Symposium on Tropical Fruits. ISHS Acta Horticulturae 370;1993. https://doi.org/10.17660/actahortic.1995.370.15
  34. 34. Salinas I, Salehi M, Hueso J, Cuevas J. Assessment of two sex-determining procedures in ‘BH-65’ papaya from an economical and developmental point of view. Fruits. 2018;73(3):184-90. https://doi.org/10.17660/th2018/73.3.5
  35. 35. Chan LaiKeng CL, Teo C. Micropropagation of Eksotika, a Malaysian papaya cultivar and the field performance of the tissue culture derived clones. ISHS Acta Horticulturae 575: International Symposium on Tropical and Subtropical Fruits; 2002. https://doi.org/10.17660/actahortic.2002.575.8
  36. 36. Araya-Valverde E, Bogantes A, Holst A, Vargas-Mora C, Gómez-Alpízar L, Brenes A, et al. Field performance of hermaphrodite papaya plants obtained through molecular selection and micropropagation. Crop Breeding and Applied Biotechnology. 2019;19:420-7. https://doi.org/10.1590/1984-70332019v19n4a59
  37. 37. Schmildt O, Silva C, Ferreguete GA, Schmildt E, Czepak MP. Correlação canônica entre caracteres vegetativos e de Capacidade de brotação em mamoeiro. Enciclopédia Biosfera. 2011;7(13). https://doi.org/10.18227/1982-8470ragro.v10i3.3021
  38. 38. Cheah L, Yau K, Subramaniam S, Lai F, editors. Cleft grafting and quality improvements of papaya cv.‘Eksotika’. Proc Seminar on the Fruit Industry in Malaysia. MARDI Johor Bahru, Malaysia; 1993.
  39. 39. Nguyen V-H, Yen C-R, Hsieh C-H. Effects of Rootstock Age and Grafting Time on Cleft Grafting in ‘Tainung No. 2’Papaya. International Journal of Research in Agricultural Sciences 2018;5(2):2348-3997.
  40. 40. Shimizu-Sato S, Tanaka M, Mori H. Auxin-cytokinin interactions in the control of shoot branching. Plant Molecular Biology. 2009;69:429-35. https://doi.org/10.1007/s11103-008-9416-3
  41. 41. Ljung K, Bhalerao RP, Sandberg G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. The Plant Journal. 2001;28(4):465-74. https://doi.org/10.1046/j.1365-313x.2001.01173.x
  42. 42. Murphy AS, Hoogner KR, Peer WA, Taiz L. Identification, purification and molecular cloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiology. 2002;128(3):935-50. https://doi.org/10.1104/pp.010519
  43. 43. Das S, Wangchu L, Raghavan M, Langstieh LB. Effect of plant growth regulators, detopping and their combination on lateral shoots initiation in papaya (Carica papaya) var. vinayak. IJCS. 2018;6(3):3085-8. https://doi.org/10.13140/RG.2.2.24640.15365
  44. 44. Satisha J, Vincent L. Vegetative propagation of papaya (Carica papaya L.) through grafting. Current Science. 2023;124(2):00113891. https://doi.org/10.18520/cs/v124/i2/239-244
  45. 45. Lazar T. Annals of botany. In: Taiz L, Zeiger E, editors. Plant physiology. 3rd ed. Oxford University Press; 2003. https://doi.org/10.1093/aob/mcg079
  46. 46. de Souza Barros FL, Schmildt ER, Amaral AT, Coelho RI. Influence of the pruning to different heights in papaya tree ‘Golden’. Revista Ciência Agronômica. 2009;40(4):596.
  47. 47. Senthilkumar S, Kumar N, Soorianathasundaram K, Jeyakumar P. Effect of plant bio-regulators in induction of lateral shoots in papaya cv. CO. 2. Plant Archives. 2014;14(2):707-10.
  48. 48. Reuveni O, Shlesinger D, editors. Rapid vegetative propagation of papaya plants by cuttings. International Symposium on the Culture of Subtropical and Tropical Fruits and Crops 275; 1989. https://doi.org/10.17660/actahortic.1990.275.36
  49. 49. Dhanyasree K, Rafeekher M, Simi S. Effect of plant bio-regulators on side shoot induction in papaya (Carica papaya) var. red lady. Pharma Innovation. 2022;11(12):5593-7.
  50. 50. Allan P, MacMillan C. Advances in propagation of Carica papaya L. cv. Honey Gold cuttings. 1991. https://doi.org/10.21273/hortsci.27.6.691f
  51. 51. Giampan JS, Cerqueira TS, Jacomino AP, Rezende JAM, Sasaki FF. Induction of lateral shoots of papaya tree (Carica papaya L.). Revista Brasileira de Fruticultura. 2005;27:185-7. https://doi.org/10.1590/S0100-29452005000100050
  52. 52. Drew R, Smith N. Growth of apical and lateral buds of papaw (Carica papaya L.) as affected by nutritional and hormonal factors. Journal of Horticultural Science. 1986;61(4):535-43. https://doi.org/10.1080/14620316.1986.11515737
  53. 53. Nguyen V-H, Yen C-R. Rootstock age and grafting season affect graft success and plant growth of papaya (Carica papaya L.) in greenhouse. Chilean Journal of Agricultural Research. 2018;78(1):59-67. https://doi.org/10.4067/s0718-58392018000100059
  54. 54. Sarip J, Nur Sulastri J, Sanimah S, Salehudin M, Razali M, Noor Faimah G, et al. Viorica: a promising rootstock in producing highly tolerance grafted papaya against papaya dieback disease. Transactions of the Malaysian Society of Plant Physiology. 2017;25(1):56-60.
  55. 55. Amin NM, Bunawan H, Redzuan RA, Jaganath IBS. Erwinia mallotivora sp., a new pathogen of papaya (Carica papaya) in Peninsular Malaysia. International Journal of Molecular Sciences. 2010;12(1):39-45. https://doi.org/10.3390/ijms12010039
  56. 56. Edelstein M, Cohen R, Burger Y, Shriber S, Pivonia S, Shtienberg D. Integrated management of sudden wilt in melons, caused by Monosporascus cannonballus, using grafting and reduced rates of methyl bromide. Plant Disease. 1999;83(12):1142-5. https://doi.org/10.1094/pdis.1999.83.12.1142
  57. 57. Mohd-Azhar H, Sarip J, Ghazali NF, Razikin MZM, Mariatulqabtiah AR. Tolerance level of grafted papaya plants against papaya dieback disease. Malaysian Applied Biology. 2021;50(1):95-103. https://doi.org/10.55230/mabjournal.v50i1.16
  58. 58. Senthilkumar S, Kumar N, Soorianathasundaram K, Jeyakumar P. A histological investigation on graft formation in papaya (Carica papaya L.). Ecology Environment and Conservation. 2016;22(December Suppl.):69-72.
  59. 59. Akino A, Auxcilia J, Soorianathasundaram K, Muthulakshmi P. Evaluation of seedlings and intervarietal grafts on biochemical properties and biotic stress tolerance enzymes activities of papaya (Carica papaya L.). IJCS. 2018;6(4):2333-4.
  60. 60. Katyayini NU, Rinne PL, Tarkowská D, Strnad M, van der Schoot C. Dual role of gibberellin in perennial shoot branching: inhibition and activation. Frontiers in Plant Science. 2020;11:736. https://doi.org/10.3389/fpls.2020.00736
  61. 61. Amelia Z, Wulandari A, editors. Effect of 6-BAP application on shoot production of Melaleuca alternifolia seedlings. IOP Conference Series: Earth and Environmental Science. IOP Publishing; 2020. https://doi.org/10.1088/1755-1315/528/1/012063
  62. 62. Cline MG. Concepts and terminology of apical dominance. American Journal of Botany. 1997;84(8):1064-9. https://doi.org/10.2307/2446149
  63. 63. Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. The Plant Journal. 2006;45(6):1028-36. https://doi.org/10.1111/j.1365-313x.2006.02656.x
  64. 64. Jones RL, Kaufman PB. The role of gibberellins in plant cell elongation. Critical Reviews in Plant Sciences. 1983;1(1):23-47. https://doi.org/10.1080/07352688309382170
  65. 65. Hartmann HT, Kester DE. Plant propagation: principles and practices. Torrey Botanical Society; 1975. https://doi.org/10.2307/2483997
  66. 66. Allan P, editor. Vegetative propagation and production of ‘Honey Gold’ papayas. Symposium on Tropical Fruit in International Trade 269; 1989. https://doi.org/10.17660/actahortic.1990.269.13
  67. 67. Mudge K. A history of grafting. In: Janick J, editors. Horticulture reviews. Vol. 35. Wiley-Blackwell; 2009. https://doi.org/10.1002/9780470593776.ch9
  68. 68. Nanda AK, Melnyk CW. The role of plant hormones during grafting. Journal of Plant Research. 2018;131(1):49-58. https://doi.org/10.1007/s10265-017-0994-5
  69. 69. Pina A, Errea P. A review of new advances in mechanism of graft compatibility–incompatibility. Scientia Horticulturae. 2005;106(1):1-11. https://doi.org/10.1016/j.scienta.2005.04.003
  70. 70. Habibi F, Liu T, Folta K, Sarkhosh A. Physiological, biochemical and molecular aspects of grafting in fruit trees. Horticulture Research. 2022;9:uhac032. https://doi.org/10.1093/hr/uhac032
  71. 71. Feng M, Augstein F, Kareem A, Melnyk CW. Plant grafting: molecular mechanisms and applications. Molecular Plant. 2024;17(1):75-91. https://doi.org/10.1016/j.molp.2023.12.006
  72. 72. Turnbull CG. Grafting as a research tool. In: Hennig L, Köhler C, editors. Plant developmental biology: methods and protocols. Vol. 655. Totowa (NJ): Humana Press; 2010:11-26. https://doi.org/10.1007/978-1-60761-765-5_2
  73. 73. Zhai L, Wang X, Tang D, Qi Q, Yer H, Jiang X, et al. Molecular and physiological characterization of the effects of auxin-enriched rootstock on grafting. Horticulture Research. 2021;8:74. https://doi.org/10.1038/s41438-021-00509-y
  74. 74. Aloni R. Vascular differentiation and plant hormones: Springer; 2021. https://doi.org/10.1007/978-3-030-53202-4
  75. 75. He W, Wang Y, Chen Q, Sun B, Tang H-R, Pan D-M, et al. Dissection of the mechanism for compatible and incompatible graft combinations of Citrus grandis (L.) Osbeck (‘Hongmian Miyou’). International Journal of Molecular Sciences. 2018;19(2):505. https://doi.org/10.3390/ijms19020505
  76. 76. Chen Z, Zhao J, Hu F, Qin Y, Wang X, Hu G. Transcriptome changes between compatible and incompatible graft combination of Litchi chinensis by digital gene expression profile. Scientific Reports. 2017;7(1):3954. https://doi.org/10.1038/s41598-017-04328-x
  77. 77. Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N, Ohme-Takagi M, et al. Spatially selective hormonal control of RAP2. 6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. Proceedings of the National Academy of Sciences. 2011;108(38):16128-32. https://doi.org/10.1073/pnas.1110443108
  78. 78. Sharma A, Zheng B. Molecular responses during plant grafting and its regulation by auxins, cytokinins and gibberellins. Biomolecules. 2019;9(9):397. https://doi.org/10.3390/biom9090397
  79. 79. Mo Z, Feng G, Su W, Liu Z, Peng F. Transcriptomic analysis provides insights into grafting union development in pecan (Carya illinoinensis). Genes. 2018;9(2):71. https://doi.org/10.3390/genes9020071
  80. 80. Köse C, Güleryüz M. Effects of auxins and cytokinins on graft union of grapevine (Vitis vinifera). New Zealand Journal of Crop and Horticultural Science. 2006;34(2):145-50. https://doi.org/10.1080/01140671.2006.9514399
  81. 81. Dayan J, Voronin N, Gong F, Sun T-p, Hedden P, Fromm H, et al. Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity and fiber differentiation in tobacco stems. The Plant Cell. 2012;24(1):66-79. https://doi.org/10.1105/tpc.111.093096
  82. 82. Choudhury AG, Ghosh SN. Improvement of grafting success of mango through application of plant growth regulators. 2021;7(2):105-8. https://doi.org/10.53552/ijmfmap.2021.v07ii02.012
  83. 83. Kehr J, Buhtz A. Endogenous RNA constituents of the phloem and their possible roles in long-distance signaling. In: Thompson GA, van Bel AJE, editors. Phloem: molecular cell biology, systemic communication, biotic interactions. Wiley; 2012. p. 186-208. https://doi.org/10.1002/9781118382806.ch9
  84. 84. Thomas HR, Frank MH. Connecting the pieces: uncovering the molecular basis for long-distance communication through plant grafting. New Phytologist. 2019;223(2):582-9. https://doi.org/10.1111/nph.15772
  85. 85. Toscano-Morales R, Xoconostle-Cázares B, Martínez-Navarro AC, Ruiz-Medrano R. AtTCTP2 mRNA and protein movement correlates with formation of adventitious roots in tobacco. Plant Signaling & Behavior. 2016;11(3):e1071003. https://doi.org/10.1080/15592324.2015.1071003
  86. 86. Frey C, Hernández-Barriuso A, Encina A, Acebes JL. Non-invasive monitoring of tomato graft dynamics using thermography and fluorescence quantum yields measurements. Physiologia Plantarum. 2023;175(3):e13935. https://doi.org/10.1111/ppl.13935
  87. 87. Shivran M, Sharma N, Dubey AK, Singh SK, Sharma N, Sharma RM, et al. Scion–rootstock relationship: molecular mechanism and quality fruit production. Agriculture. 2022;12(12):2036. https://doi.org/10.3390/agriculture12122036
  88. 88. Xie L, Tian J, Peng L, Cui Q, Liu Y, Liu J, et al. Conserved regulatory pathways for stock-scion healing revealed by comparative analysis of Arabidopsis and tomato grafting transcriptomes. Frontiers in Plant Science. 2022;12:810465. https://doi.org/10.3389/fpls.2021.810465
  89. 89. Zhang A, Matsuoka K, Kareem A, Robert M, Roszak P, Blob B, et al. Cell-wall damage activates DOF transcription factors to promote wound healing and tissue regeneration in Arabidopsis thaliana. Current Biology. 2022;32(9):1883-94. https://doi.org/10.1016/j.cub.2022.02.069
  90. 90. Kapazoglou A, Tani E, Avramidou EV, Abraham EM, Gerakari M, Megariti S, et al. Epigenetic changes and transcriptional reprogramming upon woody plant grafting for crop sustainability in a changing environment. Frontiers in Plant Science. 2021;11:613004. https://doi.org/10.3389/fpls.2020.613004
  91. 91. Zhao L, Liu A, Song T, Jin Y, Xu X, Gao Y, et al. Transcriptome analysis reveals the effects of grafting on sugar and ?-linolenic acid metabolisms in fruits of cucumber with two different rootstocks. Plant Physiology and Biochemistry. 2018;130:289-302. https://doi.org/10.1016/j.plaphy.2018.07.008
  92. 92. Buhtz A, Pieritz J, Springer F, Kehr J. Research article Phloem small RNAs, nutrient stress responses and systemic mobility. 2010;10:64. https://doi.org/10.1186/1471-2229-10-64
  93. 93. Zheng BS, Chu HL, Jin SH, Huang YJ, Wang ZJ, Chen M, et al. cDNA-AFLP analysis of gene expression in hickory (Carya cathayensis) during graft process. Tree Physiology. 2010;30(2):297-303. https://doi.org/10.1093/treephys/tpp102
  94. 94. Paultre DSG, Gustin M-P, Molnar A, Oparka KJ. Lost in transit: long-distance trafficking and phloem unloading of protein signals in Arabidopsis homografts. The Plant Cell. 2016;28(9):2016-25. https://doi.org/10.1105/tpc.16.00249
  95. 95. Notaguchi M, Okamoto S. Dynamics of long-distance signaling via plant vascular tissues. Frontiers in Plant Science. 2015;6:161. https://doi.org/10.3389/fpls.2015.00161
  96. 96. Kappagantu M, Brandon M, Tamukong YB, Culver JN. Rootstock-induced scion resistance against tobacco mosaic virus is associated with the induction of defence-related transcripts and graft-transmissible mRNAs. Molecular Plant Pathology. 2023;24(9):1184-91. https://doi.org/10.1111/mpp.13353
  97. 97. Winslow MD. Silicon, disease resistance and yield of rice genotypes under upland cultural conditions. Crop science. 1992;32(5):1208-13. https://doi.org/10.2135/cropsci1992.0011183x003200050030x
  98. 98. Ma JF, Yamaji N. Silicon uptake and accumulation in higher plants. Trends in Plant Science. 2006;11(8):392-7. https://doi.org/10.1016/j.tplants.2006.06.007
  99. 99. Sakr N. Silicon control of bacterial and viral diseases in plants. Journal of Plant Protection Research. 2016;56(4):331-6. https://doi.org/10.1515/jppr-2016-0052
  100. 100. Datnoff L. Mineral nutrition and plant disease. APS Press; 2007. https://doi.org/10.2478/v10045-008-0034-5
  101. 101. Conceição CS, Felix KCS, Mariano RL, Medeiros EV, Souza EB. Combined effect of yeast and silicon on the control of bacterial fruit blotch in melon. Scientia Horticulturae. 2014;174:164-70. https://doi.org/10.1016/j.scienta.2014.05.027
  102. 102. Kurabachew H, Wydra K. Induction of systemic resistance and defense-related enzymes after elicitation of resistance by rhizobacteria and silicon application against Ralstonia solanacearum in tomato (Solanum lycopersicum). Crop Protection. 2014;57:1-7. https://doi.org/10.1016/j.cropro.2013.10.021
  103. 103. Goldschmidt EE. Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science. 2014;5:727. https://doi.org/10.3389/fpls.2014.00727

Downloads

Download data is not yet available.