Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 2 (2025)

Advancement in genetic transformation of mulberry: Current trends and future directions

DOI
https://doi.org/10.14719/pst.8167
Submitted
10 March 2025
Published
24-05-2025 — Updated on 09-06-2025
Versions

Abstract

A vital plant species that is important to the silk industry is the mulberry (Morus spp.). However, traditional breeding methods have limitations in enhancing key traits such as disease resistance, stress tolerance and leaf yield. Genetic transformation has emerged as a powerful tool for mulberry improvement, enabling precise modifications to enhance agronomic traits. This review explores recent advancements in genetic transformation techniques, including Agrobacterium-mediated transformation, biolistic methods and CRISPR/Cas genome editing, which have significantly improved the efficiency and precision of genetic modifications in mulberry. Genetic engineering of mulberry has led to the successful incorporation of specific genes like HVA1, osmotin, mAKR2A, MmSK, MaTCP, MuGABA-T that enhance pest and disease resistance, drought and salt tolerance, biomass yield and secondary metabolite production. The review also highlights the optimization of transformation protocols, including advancements in tissue culture, regeneration systems and selection marker strategies that have improved transformation efficiency. Despite these advancements, challenges such as low transformation efficiency, genotype dependency and limited genomic resources remain. We explore future directions, including the application of synthetic biology, genome-wide association studies and multi-omics approaches, to further accelerate genetic improvements in mulberry. Additionally, emerging gene-editing tools hold great promise for precise and efficient trait enhancement. Genetic modifications in mulberry have been explored to enhance leaf quality, biotic and abiotic stress resistance, aiming to improve the performance of the silkworm (Bombyx mori), cocoon weight and consistent silk production. By summarizing the latest developments and future prospects this review provides valuable insights into the potential of genetic transformation in mulberry. The advancements discussed here are expected to contribute to the genetic improvement of mulberry, ensuring its sustainability and productivity in the sericulture industry.

References

  1. 1. Tikader A, Vijayan K. Assessment of biodiversity and strategies for conservation of genetic resources in mulberry (Morus spp.). Tree and Forest Biodiversity. Bioremediation, Biodiversity and Bioavailability. 2010;4(1):15-27.
  2. 2. Zeng X, Chen X, Zhang W, Wang Z. Agrobacterium-mediated transformation of mulberry (Morus alba L.) with GUS gene: optimization and analysis. Plant Tissue Cult Biotechnol. 2015;25(3):315-22.
  3. 3. Sericultural Statistics in India - A Glance. Bengaluru: Central Silk Board; 2025.
  4. 4. Guha A, Sengupta D, Rasineni GK, Reddy AR. An integrated diagnostic approach to understand drought tolerance in mulberry (Morus indica L.). Flora-Morphol Distrib Funct Ecol Plants. 2010;205(2):144-51. https://doi.org/10.1016/j.flora.2009.01.004
  5. 5. Vijayan K, Srivastava PP, Raghunath MK, Saratchandra B. Enhancement of stress tolerance in mulberry. Sci Hortic. 2011;129(4):511-9. https://doi.org/10.1016/j.scienta.2011.04.018
  6. 6. Sánchez MD. Mulberry: An exceptional forage tree. Anim Prod Sci. 2017;57(11):2216-22. https://doi.org/10.1071/AN16472
  7. 7. Khurana P, Checker VG. The advent of genomics in mulberry and perspectives for productivity enhancement. Plant Cell Rep. 2011;30:825-38. https://doi.org/10.1007/s00299-011-1059-1
  8. 8. Wani SA, Bhat MA, Kamilli AS, Malik GN, Mir MR, Iqbal Z, et al. Transgenesis: An efficient tool in mulberry breeding. Afr J Biotechnol. 2013;12(48):6672-81.
  9. 9. Machii H, Koyama A, Yamanouchi H. Mulberry breeding, cultivation and utilization in Japan. FAO Anim Prod Health Pap. 2000;63-72.
  10. 10. Vijayan K. The emerging role of genomic tools in mulberry (Morus) genetic improvement. Tree Genet Genomes. 2010;6(4):613-25. https://doi.org/10.1007/s11295-010-0276-z
  11. 11. Weiguo Z, Jun FR, Li L, Long L. Applications of genetic engineering in mulberry. In: Mulberry. CRC Press; 2021. p. 146-56.
  12. 12. Dhanyalakshmi KH, Chaithra HV, Sajeevan RS, Nataraja KN. Transgenics for targeted trait manipulation: The current status of genetically engineered mulberry crop. In: Kavi Kishor PB, Rajam MV, Pullaiah T, editors. Genetically modified crops: current status, prospects and challenges. Singapore: Springer. Vol. 2; 2021. p. 221-36.
  13. 13. Vijayan K, Tikader A, Kavyashree R. Genetic transformation in mulberry: Achievements and prospects. Indian J Seric. 2013;52(2):87-98.
  14. 14. Nataraja KN, Murthy HN, Rajesh K. Genetic engineering approaches for disease resistance in mulberry (Morus spp.): Current status and future prospects. Biotechnol Adv. 2011;29(1):45-53. https://doi.org/10.1016/j.biotechadv.2010.09.004
  15. 15. Chakraborti D, Sarkar A, Gupta S, Basu D. Development of transgenic mulberry (Morus alba L.) expressing Bt endotoxin for resistance against leaf roller (Diaphania pulverulentalis). Plant Cell Rep. 2018;37(9):1215-26. https://doi.org/10.1007/s00299-018-2309-3
  16. 16. Guo Q, Zhao P, Xu J. Overexpression of DREB transcription factor improves drought tolerance in mulberry (Morus alba L.). Tree Physiol. 2016;36(4):437-50. https://doi.org/10.1093/treephys/tpv122
  17. 17. Wang X, Sun Z, Li J. Enhanced salinity tolerance in transgenic mulberry expressing NHX1 gene from Arabidopsis thaliana. Plant Physiol Biochem. 2020;153:80-9. https://doi.org/10.1016/j.plaphy.2020.04.015
  18. 18. Zhao Y, Li Q, Zhang H, Zhang X. Genetic modification of flavonoid biosynthesis in mulberry (Morus spp.) for improved leaf quality. Funct Plant Biol. 2017;44(7):675-87. https://doi.org/10.1071/FP17012
  19. 19. Lalitha N, Prakash S, Chandran R. Regulatory aspects and public perception of transgenic mulberry in sericulture. J Biotechnol Crop Sci. 2019;8(2):55-67.
  20. 20. Feng Y, Zhang C, Liu X, Jiang J. Biosafety concerns and regulatory challenges of genetically modified mulberry: A review. Plant Biotechnol J. 2021;19(5):856-70. https://doi.org/10.1111/pbi.13598
  21. 21. Sharma P, Singh R, Verma S. CRISPR/Cas9-mediated genome editing in mulberry: a new frontier in functional genomics. Plant Genome. 2022;15(1):e20077. https://doi.org/10.1002/tpg2.20077
  22. 22. Shanthinie A, Varanavasiappan S, Kumar KK, Arul L, Meenakshisundaram P, Harish N, et al. Engineering TGMS in rice through CRISPR/Cas9-mediated genome editing. Cereal Res Commun. 2024;1-9. https://doi.org/10.1007/s42976-024-00587-3
  23. 23. Machii H. Organogenesis from immature leaf cultures in mulberry, Morus alba L. J Seric Sci Jpn. 1992;61(6):512-9. https://doi.org/10.11416/kontyushigen1930.61.512
  24. 24. Bhatnagar S, Khurana P. Agrobacterium tumefaciens-mediated transformation of Indian mulberry, Morus indica cv. K2: a time-phased screening strategy. Plant Cell Rep. 2003;21:669-75. https://doi.org/10.1007/s00299-002-0561-0
  25. 25. Vijayan K, Raju PJ, Tikader A, Saratchnadra B. Biotechnology of mulberry (Morus L.) - An appraisal. Emir J Food Agric. 2014;26(6):418-42. https://doi.org/10.9755/ejfa.v26i6.18066
  26. 26. Agarwal S, Kanwar K, Saini N, Jain RK. Agrobacterium tumefaciens mediated genetic transformation and regeneration of Morus alba L. Sci Hortic. 2004;100(1-4):183-91. https://doi.org/10.1016/j.scienta.2003.09.010
  27. 27. Bhau BS, Wakhlu AK. Effect of genotype, explant type and growth regulators on organogenesis in Morus alba. Plant Cell Tissue Organ Cult. 2001;66:25-9. https://doi.org/10.1023/A:1010669119380
  28. 28. Li R, Liu L, Dominic K, Wang T, Fan T, Hu F, et al. Mulberry (Morus alba) MmSK gene enhances tolerance to drought stress in transgenic mulberry. Plant Physiol Biochem. 2018;132:603-11. https://doi.org/10.1016/j.plaphy.2018.10.013
  29. 29. Bhatnagar S, Kapur A, Khurana P. TDZ-mediated differentiation in commercially valuable Indian mulberry, Morus indica cultivars K2 and DD. Plant Biotechnol. 2001;18(1):61-5. https://doi.org/10.5511/plantbiotechnology.18.61
  30. 30. Kapur A, Bhatnagar S, Khurana P. Efficient regeneration from mature leaf explants of Indian mulberry via organogenesis. Sericologia. 2001;41(2):207-18.
  31. 31. Chitra DSV, Chinthapalli B, Padmaja G. Efficient regeneration system for genetic transformation of mulberry (Morus indica L. cultivar ‘S-36’) using in-vitro derived shoot meristems. Am J Plant Sci. 2014;5:1-6. https://doi.org/10.4236/ajps.2014.51001
  32. 32. Agarwal S, Kanwar K. Comparison of genetic transformation in Morus alba L. via different regeneration systems. Plant Cell Rep. 2007;26:177-85. https://doi.org/10.1007/s00299-006-0220-0
  33. 33. Nozue M, Cai W, Li L, Xu W, Shioiri H, Kojima M, et al. Development of a reliable method for Agrobacterium tumefaciens-mediated transformation of mulberry callus. J Seric Sci Jpn. 2000;69(6):345-52. https://doi.org/10.11416/kontyushigen1930.69.345
  34. 34. Bhatnagar S, Kapur A, Khurana P. Evaluation of parameters for high efficiency gene transfer via Agrobacterium tumefaciens and production of transformants in Indian mulberry, Morus indica cv. K2. Plant Biotechnol. 2004;21(1):1-8. https://doi.org/10.5511/plantbiotechnology.21.1
  35. 35. Ping LX, Nogawa M, Shioiri H, Nozue M, Makita N, Takeda M, et al. In planta transformation of mulberry trees (Morus alba L.) by Agrobacterium tumefaciens. J Insect Biotechnol Seric. 2003;72(3):177-84. https://doi.org/10.11416/jibs2001.72.3_177
  36. 36. Machii H. Leaf disc transformation of mulberry plant (Morus alba L.) by Agrobacterium Ti plasmid. J Seric Sci Jpn. 1990;59(2):105-10. https://doi.org/10.11416/kontyushigen1930.59.105
  37. 37. Sugimura Y, Uchida A, Adachi T, Hasegawa H, Kotani E, Furusawa T. Major improvements in gene delivery into mulberry leaf cells by particle inflow gun. J Seric Sci Jpn. 2000;69(1):39-45. https://doi.org/10.11416/kontyushigen1930.69.39
  38. 38. Bhatnagar S, Kapur A, Khurana P. Evaluation of parameters for high efficiency gene transfer via particle bombardment in Indian mulberry. Indian J Exp Biol. 2002 Dec;40:1387-92.
  39. 39. Zhou H, Lei Y, Hou Z, Yuan J, He N. Efficient mesophyll-derived protoplast manipulation system as a versatile tool for characterization of genes responding to multiple stimuli in mulberry. Plant Cell Tissue Organ Culture. 2024;156(2):50. https://doi.org/10.1007/s11240-024-02680-1
  40. 40. Zhang JY, Zhang Y, Song YR. Chloroplast genetic engineering in higher plants. J Integr Plant Biol. 2003;45(5):509. https://doi.org/10.1111/j.1744-7909.2003.00509.x
  41. 41. Umate P, Schwenkert S, Karbat I, Dal Bosco C, Mlcochova L, Volz S, et al. Deletion of PsbM in tobacco alters the QB site properties and the electron flow within photosystem II. J Biol Chem. 2007;282(13):9758-67. https://doi.org/10.1074/jbc.M609558200
  42. 42. Zhao Y, Han Q, Ding C, Huang Y, Liao J, Chen T, Feng S, Zhou L, Zhang Z, Chen Y, Yuan S. Effect of low temperature on chlorophyll biosynthesis and chloroplast biogenesis of rice seedlings during greening. Int J Mol Sci. 2020;21(4):1390. https://doi.org/10.3390/ijms21041390
  43. 43. Sivaprasad V, Raghavendra Rao K, Krishnaprasad K. Physiological and biochemical responses of mulberry under salt stress. Plant Stress Biol. 2006;7(4):95-102.
  44. 44. Ghosh S, Dey G. Biotic and abiotic stress tolerance through CRISPR-Cas mediated genome editing. J Plant Biochem Biotechnol. 2022;31(2):227-38. https://doi.org/10.1007/s13562-021-00746-1
  45. 45. Lal MK, Tiwari RK, Altaf MA, Kumar A, Kumar R. Abiotic and biotic stress in horticultural crops: insight into recent advances in the underlying tolerance mechanism. Front Plant Sci. 2023;14:1212982. https://doi.org/10.3389/fpls.2023.1212982
  46. 46. Lal S, Bhatnagar S, Khurana P. Screening of Indian mulberry for abiotic stress tolerance and ameliorative effect of calcium on salinity stress. Physiol Mol Biol Plants. 2006;12(3):193-9.
  47. 47. Ghosh MK, Das P, Sahoo H. Impact of drought stress on growth and leaf yield of mulberry (Morus alba L.). J Crop Sci Biotechnol. 2012;15(2):125-30.
  48. 48. Singh R, Gupta VK, Patel S. Water stress-induced changes in mulberry (Morus spp.) and its effect on silkworm rearing performance. J Seric Sci. 2018;54(3):180-90.
  49. 49. Sarkar T, Mogili T, Sivaprasad V. Improvement of abiotic stress adaptive traits in mulberry (Morus spp.): an update on biotechnological interventions. 3 Biotech. 2017;7:1-14. https://doi.org/10.1007/s13205-017-0710-0
  50. 50. Nataraja KN, Kumar P, Rajan MV. Recent advances in mulberry breeding for stress tolerance. Indian J Seric. 2020;59(1):12-20.
  51. 51. Guha A, Rasineni GK, Reddy AR. Drought tolerance in mulberry (Morus spp.): a physiological approach with insights into growth dynamics and leaf yield production. Exp Agric. 2010;46(4):471-88. https://doi.org/10.1017/S0014479710000640
  52. 52. Guha A, Reddy AR. Leaf gas exchange, water relations and photosystem-II functionality depict anisohydric behavior of drought-stressed mulberry (Morus indica, cv. V1) in the hot semi-arid steppe agroclimate of Southern India. Flora Morphol Distrib Funct Ecol Plants. 2014;209(2):142-52. https://doi.org/10.1016/j.flora.2014.01.001
  53. 53. Sarkar T, Doss SG, Sivaprasad V, Teotia RS. Stress tolerant traits in mulberry (Morus spp.) resilient to climate change: an update on its genetic improvement. Mulberry. 2021;165-79. https://doi.org/10.1007/978-3-030-73519-7_10
  54. 54. Vijayan K, Gnanesh BN, Shabnam AA, Sangannavar PA, Sarkar T, Weiguo Z. Genomic designing for abiotic stress resistance in mulberry (Morus spp.). In: Genomic designing for abiotic stress resistant technical crops. Cham: Springer International Publishing; 2022. p. 157-244. https://doi.org/10.1007/978-3-030-91177-5_5
  55. 55. Lal S, Gulyani V, Khurana P. Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res. 2008;17:651-63. https://doi.org/10.1007/s11248-007-9139-0
  56. 56. Bajji M, Kinet JM, Lutts S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 2002;36:61-70. https://doi.org/10.1023/A:1014732714549
  57. 57. Checker VG, Chhibbar AK, Khurana P. Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res. 2012;21:939-57. https://doi.org/10.1007/s11248-011-9584-1
  58. 58. Das M, Chauhan H, Chhibbar A, Rizwanul Haq QM, Khurana P. High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutive and inducible expression of tobacco osmotin. Transgenic Res. 2011;20:231-46. https://doi.org/10.1007/s11248-010-9409-0
  59. 59. Wei W, He J, Luo Y, Yang Z, Xia X, Han Y, et al. Root-growth-related MaTCP transcription factors responsive to drought stress in mulberry. Forests. 2023;14(1):143. https://doi.org/10.3390/f14010143
  60. 60. Sarkar T, Nataraja KN, Sajeevan RS, Dhanyalakshmi KH, Doss SG, Raghunath MK, et al. Co-expression of AtDREB2A and AtSHN1 in transgenic mulberry (Morus spp.) confers tolerance to drought and salinity and reduces post-harvest water loss. Plant Growth Regul. 2025:1-4. https://doi.org/10.1007/s10725-025-01306-6
  61. 61. Zhang M, Liu Z, Fan Y, Liu C, Wang H, Li Y, et al. Characterization of GABA-transaminase gene from mulberry (Morus multicaulis) and its role in salt stress tolerance. Genes. 2022;13(3):501. https://doi.org/10.3390/genes13030501
  62. 62. Chen L, Hu W, Mishra N, Wei J, Lu H, Hou Y, et al. AKR2A interacts with KCS1 to improve VLCFAs contents and chilling tolerance of Arabidopsis thaliana. Plant J. 2020;103(4):1575-89. https://doi.org/10.1111/tpj.14836
  63. 63. Dandin SB, Girish Naik V. Biotechnology in mulberry (Morus spp.) crop improvement: research directions and priorities. Plant Biotechnol Mol Markers. 2004:206-16.
  64. 64. Baruah JP, Borthakur I. Infectious disease (fungal, bacterial, viral and nematodal) of mulberry plant and its control measure: a review. Int J Plant Soil Sci. 2021;33(18):110-6.
  65. 65. Sakthivel N, Kumar JN, Beevi ND, Devamani MM, Teotia RS. Mulberry Pests. Central Sericultural Research & Training Institute; 2019. 56p.
  66. 66. Wang D, Liu Z, Qin Y, Zhang S, Yang L, Shang Q, et al. Mulberry MnGolS2 mediates resistance to botrytis cinerea on transgenic plants. Genes. 2023;14(10):1912. https://doi.org/10.3390/genes14101912
  67. 67. Xin Y, Meng S, Ma B, He W, He N. Mulberry genes MnANR and MnLAR confer transgenic plants with resistance to Botrytis cinerea. Plant Sci. 2020;296:110473. https://doi.org/10.1016/j.plantsci.2020.110473
  68. 68. Wang D, Gong N, Liu C, Li S, Guo Z, Wang G, et al. MnASI1 mediates resistance to Botrytis cinerea in mulberry (Morus notabilis). Int J Mol Sci. 2022;23(21):13372. https://doi.org/10.3390/ijms232113372
  69. 69. Liang J, Wang Y, Ding G, Li W, Yang G, He N. Biotic stress-induced expression of mulberry cystatins and identification of cystatin exhibiting stability to silkworm gut proteinases. Planta. 2015;242:1139-51. https://doi.org/10.1007/s00425-015-2345-x
  70. 70. Wang H, Lou C, Zhang Y, Tan J, Jiao F. Preliminary report on Oryza cystatin gene transferring into mulberry and production of transgenic plants. Acta Seric Sin. 2003;29:291-4.
  71. 71. Kumar K, Mohan M, Tiwari N, Kumar S. Production potential and leaf quality evaluation of selected mulberry (Morus alba) clones. J Pharmacogn Phytochem. 2018;7(2):482-6.
  72. 72. Mogili T, Sarkar T, Gnanesh BN. Mulberry breeding for higher leaf productivity. In: The mulberry genome. Cham: Springer International Publishing; 2023. p. 57-114.
  73. 73. Razdan MK, Thomas TD, editors. Mulberry: genetic improvement in context of climate change. CRC Press; 2021.
  74. 74. Lalitha N, Kih S, Banerjee R, Chattopadhya S, Saha AK, Bindroo BB. High frequency multiple shoot induction and in vitro regeneration of mulberry (Morus indica L.cv.S-1635). Int J Adv Res. 2013;1(1):22-6. https://doi.org/10.13140/RG.2.2.28864.40969
  75. 75. Tan J, Lou C, Zhong M. Transformation of glycinin gene into mulberry and identification of the transgenic plants. Sericologia. 2002;42(4):489-99.
  76. 76. Sajeevan RS, Nataraja KN, Shivashankara KS, Pallavi N, Gurumurthy DS, Shivanna MB. Expression of Arabidopsis SHN1 in Indian mulberry (Morus indica L.) increases leaf surface wax content and reduces post-harvest water loss. Front Plant Sci. 2017;8:418. https://doi.org/10.3389/fpls.2017.00418
  77. 77. Sarkar T, Ravindra KN, Sidhu GK, Doss SG, Raghunath MK, Gayathri T, et al. Overexpression of phosphoenol pyruvate carboxylase gene of Flaveria trinervia in transgenic mulberry (Morus spp.) leads to improved photosynthesis rate and tolerance to drought and salinity stresses. Plant Cell Tissue Organ Culture. 2024;156(1):26. https://doi.org/10.1007/s11240-023-02646-9

Downloads

Download data is not yet available.