Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 2 (2025)

Antihyperglycemic and antidyslipidemic effects of the aqueous extract of Withania adpressa in rats

DOI
https://doi.org/10.14719/pst.8231
Submitted
13 March 2025
Published
05-06-2025 — Updated on 14-06-2025
Versions

Abstract

The current study was conducted to evaluate the antihyperglycemic and antidyslipidemic effects of Withania adpressa aqueous extract (WAAE) in 2 experimental animal models. In streptozotocin-induced diabetic rats, daily oral administration of WAAE at a dose of 20 mg/kg for 15 days significantly reduced fasting blood glucose, improved plasma lipid profile, increased hepatic, muscle glycogen content and enhanced liver histological architecture. In another model of tyloxapol-induced hyperlipidemia, a single oral dose of WAAE at 400 mg/kg significantly reduced plasma concentrations of total cholesterol, triglycerides and LDL-c without affecting HDL-c levels. These results highlight the promising therapeutic potential of Withania adpressa in managing metabolic disorders such as diabetes and dyslipidemia.

References

  1. 1. Wild SH, Roglic G, Green A, Sicree R, King H. Global Prevalence of Diabetes: Estimates for the Year 2000 and Projections for 2030. Diabetes Care [Internet]. 2004 Oct 1;27(10):2568–29. Available from: http://dx.doi.org/10.2337/diacare.27.10.2569-a
  2. 2. Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Phys Ther. 2008;88(11):1254–64. https://doi.org/10.2522/ptj.20080020
  3. 3. Ghorbani A. Best herbs for managing diabetes: A review of clinical studies. Braz J Pharm. 2013;49:413–22. https://doi.org/10.1590/S1984-82502013000300003
  4. 4. Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TP. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr. 2007;40(3):163–73. https://doi.org/10.3164/jcbn.40.163
  5. 5. Jawad M, Schoop R, Suter A, Peter Klein P, Eccles R. Perfil de eficacia y seguridad de Echinacea purpurea en la prevencion de episodios de resfriado comun: Estudio clinico aleatorizado, doble ciego y controlado con placebo. Rev fitoter. 2013;125–35.
  6. 6. Marles RJ, Farnsworth NR. Antidiabetic plants and their active constituents. Phytomed. 1995;2(2):137–89. https://doi.org/10.1016/S0944-7113(11)80059-0
  7. 7. Ben Bakrim W, El Bouzidi L, Nuzillard JM, Cretton S, Saraux N, Monteillier A, et al. Bioactive metabolites from the leaves of Withania adpressa. Pharm Biol. 2018;56(1):505–10. https://doi.org/10.1080/13880209.2018.1499781
  8. 8. Hepper FN. Old World Withania (Solanaceae): A taxonomic review and key to the species. Solanaceae III: taxonomy, chemistry, evolution. 1991:211–27.
  9. 9. Bellakhdar J. La pharmacopee marocaine traditionnelle. Medicine arabe ancienne et savoirs populaires. 1997.
  10. 10. Lee J, Liu J, Feng X, Salazar Hernandez MA, Mucka P, Ibi D, et al. Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice. Nat Med. 2016;22(9):1023–32. https://doi.org/10.1038/nm.4145
  11. 11. Acharya P, Huded P, Bettadahalli S, Zarei M, Uppin V, Venugopal N, et al. Withaferin-A down-regulate enterohepatic circulation of bile acids: An insight from a hyperlipidemic rat model. J Agri Food Res. 2020;2:100035. https://doi.org/10.1016/j.jafr.2020.100035
  12. 12. Ajebli M, Eddouks M. Buxus sempervirens L improves streptozotocin-induced diabetes mellitus in rats. Cardiovasc Hematol Disord Drug Targets. 2017;17(2):142–52. https://doi.org/10.2174/1871529X17666170918140817
  13. 13. Bouhlali ED, Alem C, Zegzouti YF. Antioxidant and anti-hemolytic activities of phenolic constituents of six moroccan date fruit (Phoenix dactylifera L.) syrups. Biotechnol Indian J. 2016;12(1):45–52.
  14. 14. Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food chem. 2003;81(3):321–26. https://doi.org/10.1016/S0308-8146(02)00423-5
  15. 15. Broadhurst RB, Jones WT. Analysis of condensed tannins using acidified vanillin. J Sci Food Agri. 1978;29(9):788–94. https://doi.org/10.1002/jsfa.2740290908
  16. 16. Louli V, Ragoussis N, Magoulas K. Recovery of phenolic antioxidants from wine industry by-products. Bioresour Technol. 2004;92(2):201–08. https://doi.org/10.1016/j.biortech.2003.06.002
  17. 17. Toxicity–Up AO. OECD guideline for testing of chemicals. Organisation for economic co-operation and development: Paris, France. 2001;1–4.
  18. 18. Taher M, Tg Zakaria TM, Susanti D, Zakaria ZA. Hypoglycaemic activity of ethanolic extract of Garcinia mangostana Linn. in normoglycaemic and streptozotocin-induced diabetic rats. Complement Altern Med. 2016;16:1–2. https://doi.org/10.1186/s12906-016-1118-9
  19. 19. Qabouche A, Amssayef A, Bouadid I, Lahrach N, El-Haidani A, Eddouks M. Antidiabetic and antidyslipidemic effects of Artemisia mesatlantica, an endemic plant from Morocco. Cardiovasc Hematol Disord Drug Targets. 2023;23(1):50–63. https://doi.org/10.2174/1871529X23666230803113616
  20. 20. Lu G. Improved assembly of the hartung-clark double cannula for the isolated frog heart. Sci. 1948;107(2775):255–56. https://doi.org/10.1126/science.107.2775.255
  21. 21. Carroll NV, Longley RW, Roe JH. The determination of glycogen in liver and muscle by use of anthrone reagent. J biol Chem. 1956;220(2):583–93. https://doi.org/10.1016/S0021-9258(18)65284-6
  22. 22. Amssayef A, Eddouks M. In vivo antihyperglycemic and antidyslipidemic effects of L-tartaric acid. Cardiovasc Hematol Disord Drug Targets. 2022;22(3):185–98. https://doi.org/10.2174/1871529X23666221202091848
  23. 23. Junod A, Lambert AE, Stauffacher W, Renold AE. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest. 1969;48(11):2129–39. https://doi.org/10.1172/JCI106180
  24. 24. Gupta RK, Kumar D, Chaudhary AK, Maithani M, Singh R. Antidiabetic activity of Passiflora incarnata Linn. in streptozotocin-induced diabetes in mice. J Ethnopharma. 2012;139(3):801–06. https://doi.org/10.1016/j.jep.2011.12.021
  25. 25. Ayele AG, Kumar P, Engidawork E. Antihyperglycemic and hypoglycemic activities of the aqueous leaf extract of Rubus Erlangeri Engl (Rosacea) in mice. Metab Open. 2021; 11:100118. https://doi.org/10.1016/j.metop.2021.100118
  26. 26. Lee ES, Uhm KO, Lee YM, Han M, Lee M, Park JM, et al. CAPE (caffeic acid phenethyl ester) stimulates glucose uptake through AMPK (AMP-activated protein kinase) activation in skeletal muscle cells. Biochem Biophys Res Commun. 2007;361(4):854–58. https://doi.org/10.1016/j.bbrc.2007.07.068
  27. 27. Neto LS, Moraes Moraes-Souza RQ, Soares TS, Pinheiro MS, Leal Leal-Silva T, Hoffmann JC, et al. A treatment with a boiled aqueous extract of Hancornia speciosa gomes leaves improves the metabolic status of streptozotocin-induced diabetic rats. Complement Med Ther. 2020;20:1–8. https://doi.org/10.1186/s12906-020-02919-2
  28. 28. Kuo FY, Cheng KC, Li Y, Cheng JT. Oral glucose tolerance test in diabetes, the old method revisited. World J Diabet. 2021;12(6):786. https://doi.org/10.4239/wjd.v12.i6.786
  29. 29. Mooradian A. Antioxidants and diabetes. In: Nestle nutrition workshop series clinical and performance programme; 2006 Jan 1; 11. p. 107). https://doi.org/10.1159/000094429
  30. 30. Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabet. 2015;6(3):456. https://doi.org/10.4239/wjd.v6.i3.456
  31. 31. Salamatullah AM. Antioxidant, anti-inflammatory and analgesic properties of chemically characterized polyphenol-rich extract from Withania adpressa Coss. ex Batt Life. 2022;13(1):109. https://doi.org/10.3390/life13010109
  32. 32. Khattab HA, El-Shitany NA, Abdallah IZ, Yousef FM, Alkreathy HM. Antihyperglycemic potential of Grewia asiatica fruit extract against streptozotocin-induced hyperglycemia in rats: anti-inflammatory and antioxidant mechanisms. Oxidative Med Cell Longevity. 2015;2015(1):549743. https://doi.org/10.1155/2015/549743
  33. 33. Aslan M, Orhan N, Orhan DD, Ergun F. Hypoglycemic activity and antioxidant potential of some medicinal plants traditionally used in Turkey for diabetes. J Ethanopharama. 2010;128(2):384–89. https://doi.org/10.1016/j.jep.2010.01.040
  34. 34. Yan X, Huang G, Liu Q, Zheng J, Chen H, Huang Q, et al. Withaferin A protects against spinal cord injury by inhibiting apoptosis and inflammation in mice. Pharma Biol. 2017;55(1):1171–76. https://doi.org/10.1080/13880209.2017.1288262
  35. 35. Gorelick J, Rosenberg R, Smotrich A, Hanus L, Bernstein N. Hypoglycemic activity of withanolides and elicitated Withania somnifera. Phytochem. 2015;116:283–89. https://doi.org/10.1016/j.phytochem.2015.02.029
  36. 36. SoRelle JA, Itoh T, Peng H, Kanak MA, Sugimoto K, Matsumoto S, et al. Withaferin A inhibits pro-inflammatory cytokine-induced damage to islets in culture and following transplantation. Diabetologia. 2013;56:814–24. https://doi.org/10.1007/s00125-012-2813-9
  37. 37. Surya Ulhas R, Malaviya A. In-silico validation of novel therapeutic activities of withaferin a using molecular docking and dynamics studies. J Biomol Struct Dyn. 2023;41(11):5045–56. https://doi.org/10.1080/07391102.2022.2078410
  38. 38. Meyer C, Dostou JM, Welle SL, Gerich JE. Role of human liver, kidney and skeletal muscle in postprandial glucose homeostasis. Am J Physiol Endocrinol Metab. 2002;282(2): E419–27. https://doi.org/10.1152/ajpendo.00032.2001
  39. 39. Grover JK, Vats V, Yadav S. Effect of feeding aqueous extract of Pterocarpus marsupium on glycogen content of tissues and the key enzymes of carbohydrate metabolism. Mol Cell Biochem. 2002;241:53–59. https://doi.org/10.1023/A:1020870526014
  40. 40. Bollen M, Stalmans W. The hepatic defect in glycogen synthesis in chronic diabetes involves the G-component of synthase phosphatase. Biochem J. 1984;217(2):427–34. https://doi.org/10.1042/bj2170427
  41. 41. Barros BS, Conte Santos D, Haas Pizarro M, Melo LG, Brito Gomes M. Type 1 diabetes and non-alcoholic fatty liver disease: when should we be concerned A nationwide study in Brazil. Nutr. 2017;9(8):878. https://doi.org/10.3390/nu9080878
  42. 42. Kumar S, Kumar V, Prakash O. Antidiabetic, hypolipidemic and histopathological analysis of Dillenia indica (L.) leaves extract on alloxan induced diabetic rats. Asian Pac J Trop Med. 2011;4(5):347–52. https://doi.org/10.1016/S1995-7645(11)60101-6
  43. 43. Aghajanyan A, Movsisyan Z, Trchounian A. Antihyperglycemic and antihyperlipidemic activity of hydroponic Stevia rebaudiana aqueous extract in hyperglycemia induced by immobilization stress in rabbits. BioMed Res Int. 2017;2017(1):9251358. https://doi.org/10.1155/2017/9251358
  44. 44. Surya S, Kumar RA, Carla B, Sunil C. Antihyperlipidemic effect of Ficus dalhousiae miq. stem bark on Triton WR-1339 and high fat diet-induced hyperlipidemic rats. Bull Fac Pharm Cairo Univ. 2017;55(1):73–77. https://doi.org/10.1016/j.bfopcu.2016.10.003
  45. 45. Zarzecki MS, Araujo SM, Bortolotto VC, de Paula MT, Jesse CR, Prigol M. Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicol Rep. 2014;1:200–08. https://doi.org/10.1016/j.toxrep.2014.02.003
  46. 46. Sirtori CR. The pharmacology of statins. Pharmacol Res. 2014;88:3 3–11. https://doi.org/10.1016/j.phrs.2014.03.002
  47. 47. Mahamuni SP, Khose RD, Menaa F, Badole SL. Therapeutic approaches to drug targets in hyperlipidemia. BioMed. 2012;2(4):137–46. https://doi.org/10.1016/j.biomed.2012.08.002
  48. 48. Datta A, Bagchi C, Das S, Mitra A, De Pati A, Tripathi SK. Antidiabetic and antihyperlipidemic activity of hydroalcoholic extract of Withania coagulans Dunal dried fruit in experimental rat models. J Ayurveda Integr Med. 2013;4(2):99. https://doi.org/10.4103/0975-9476.113880
  49. 49. Makhlouf EA, Alameideen YK, El-Shiekh RA, Okba MM. Unveilling the antidiabetic potential of ashwagandha (Withania somnifera L.) and its withanolides- A review. Nat Prod Res. 2024;1–6. https://doi.org/10.1080/14786419.2024.2439009
  50. 50. Durg S, Bavage S, Shivaram SB. Withania somnifera (Indian ginseng) in diabetes mellitus: A systematic review and meta-analysis of scientific evidence from experimental research to clinical application. Phytother Res. 2020;34(5):1041–59. https://doi.org/10.1002/ptr.6589

Downloads

Download data is not yet available.