Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Gamma ray-induced mutations in hemp (Cannabis sativa L.) for enhanced industrial and medicinal traits

DOI
https://doi.org/10.14719/pst.8261
Submitted
14 March 2025
Published
06-10-2025 — Updated on 17-10-2025
Versions

Abstract

Mutation breeding is a powerful tool for inducing genetic diversity and facilitating the development of crops with novel and desirable traits. These genetic variations will consequently expand available germplasm of a crop. This study aimed to create hemp (Cannabis sativa L.) mutants with enhanced industrial and medicinal characteristics through gamma irradiation. Two seed groups i.e., pre-irradiation hydropriming (G1) and post-irradiation hydropriming (G2) were subjected to four gamma radiation doses (150 Gy, 300 Gy, 450 Gy and 600 Gy) using a Co60 source. Seeds were hydro primed before radiation exposure in G1 and after irradiation in G2 for 12 hrs. Higher doses of radiation led to greater phenotypic variation among the surviving plants. Out of forty isolated mutants, six exhibited significant improvements. Mutant ‘M1’ (G1D1) showed superior industrial traits including increased plant height, stem thickness and shoot weight, while, ‘M31’ (G2D3) demonstrated medicinal traits such as enhanced axillary shoots, trichome number and trichome size. These mutants will be advanced for potential use as new industrial and medicinal varieties of hemp. Variants with superior traits may be included in future breeding programs as well.

References

  1. 1. Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, et al. Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip. 2016;30(1):1-6. https://doi.org/10.1080/13102818.2015.1087333
  2. 2. Jahan R, Malik S, Ansari SB, Khan S. Evaluation of optimal doses for gamma rays and sodium azide in Linseed genotypes. Agric Sci Digest-A Res J. 2021;41:207-10. https://doi.org/10.18805/ag.D-5165
  3. 3. Thenuja M, Sutharsan S, Rifnas LM. Effects of different levels of gamma radiation on growth and yield characteristics of groundnut. Asian J Res Agric For. 2024;10(1):1-10. https://doi.org/10.9734/ajraf/2024/v10i1264
  4. 4. Ahmad Z, Abu Hassan A, Salleh S, Ariffin S, Shamsudin S, Basiran MN. Improvement of Malaysian ornamental plants through induced mutation. Pertanika J Tropical Agric Sci. 2012;35(3):631-6.
  5. 5. Raina A, Laskar RA, Khursheed S, Khan S, Parveen K, Amin R. Induce physical and chemical mutagenesis for improvement of yield attributing traits and their correlation analysis in chickpea. Int Lett Nat Sci. 2017;61:14-22. https://doi.org/10.56431/p-x5xgek
  6. 6. Ahloowalia BS, Maluszynski M, Nichterlein K. Global impact of mutation-derived varieties. Euphytica. 2004;135:187-204. https://doi.org/10.1023/B:EUPH.0000014914.85465.4f
  7. 7. Raina A, Laskar RA, Khursheed S, Amin R, Tantray YR, Parveen K, et al. Role of mutation breeding in crop improvement-past, present and future. Asian Res J Agric. 2016;2(2):1-13. https://doi.org/10.9734/ARJA/2016/29334
  8. 8. Parry MAJ, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, et al. Mutation discovery for crop improvement. J Exp Bot. 2009;60(10):2817-25. https://doi.org/10.1093/jxb/erp189
  9. 9. Bado S, Forster BP, Maghuly F. Physical and chemicals mutagenesis in plant breeding. In: Penna S, Jain SM, editors. Mutation breeding for sustainable food production and climate resilience. Singapore: Springer Nature Singapore; 2023. p. 57-97. https://doi.org/10.1007/978-981-16-9720-3_3
  10. 10. International Atomic Energy Agency. FAO/IAEA Mutant Variety Database [Internet]. Officially released mutant varieties [cited 2024 Mar 9]. https://nucleus.iaea.org/sites/mvd/SitePages/Home.aspx
  11. 11. Maluszynski M, Szarejko I, Bhatia CR, Nichterlein K, Lagoda, PJ. Methodologies for generating variability. Part 4: Mutation techniques. In: Ceccarelli S, Guimar EP, Weltzien E, editors. Plant breeding and farmer participation. Rome: Food and Agriculture Organization (FAO); 2009. p. 159-94.
  12. 12. Yamaguchi H, Shimizu A, Hase Y, Tanaka A, Shikazono N, Deg K, et al. Effects of ion beam irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breed Sci. 2010;60:398-404. https://doi.org/10.1270/jsbbs.60.398
  13. 13. Kim YS, Sung SY, Jo YD, Lee HJ, Kim SH. Effects of gamma ray dose rate and sucrose treatment on mutation induction in chrysanthemum. Eur J Hortic Sci. 2016;81(4):212-8. http://doi.org/10.17660/eJHS.2016/81.4.4
  14. 14. Thounaojam AS, Patel KV, Solanki RU, Chaudhary RI, Chavda NK. Response of gamma irradiation on germination and seedling growth of green gram var. GAM 8. Environ Conserv J. 2024;25(1):131-7.
  15. 15. Mudibu J, Nkongolo KKC, Kalonji-Mbuyi, A, Kizungu RV. Effect of gamma irradiation on morpho-agronomic characteristics of soybeans (Glycine max L.). Am J Plant Sci. 2012;3(3):331-7. http://doi.org/10.4236/ajps.2012.33039
  16. 16. Dwivedi K, Kumar K, Kumar G. Studies on gamma rays induced cyto-morphological variations and procurement of some induced novel mutants in Kalmegh [Andrographis paniculata (Burm. f.) nees]. Cytol Genet. 2021;55:379-87. https://doi.org/10.3103/S0095452721040034
  17. 17. Kaushal S. Impact of physical and chemical mutagens on sex expression in Cannabis sativa. Indian J Fundament Appl Life Sci. 2012;2:97-103.
  18. 18. Zottini M, Mandolino G, Ranalli P. Effects of γ-ray treatment on Cannabis sativa pollen viability. Plant Cell Tiss Organ Cult. 1997;47:189-94. https://doi.org/10.1007/BF02318957
  19. 19. Ahloowalia BS, Maluszynski M. Induced mutations–A new paradigm in plant breeding. Euphytica. 2001;118(2):167-73. https://doi.org/10.1023/A:1004162323428
  20. 20. Taghavi T, Patel H, Rafie R. Comparing pH differential and methanol‐based methods for anthocyanin assessments of strawberries. Food Sci Nutr. 2022;10(7):2123-31. https://doi.org/10.1002/fsn3.2065
  21. 21. Gholivand MB, Piryaei M. The antioxidant activity, total phenolics and total flavonoids content of Bryonia dioica Jacq. Biologija. 2012;58(3):99-105. https://doi.org/10.6001/biologija.v58i3.2526
  22. 22. Xiong H, Guo H, Zhou C, Guo X, Xie Y, Zhao L, et al. A combined association mapping and t-test analysis of SNP loci and candidate genes involving in resistance to low nitrogen traits by a wheat mutant population. PLoS One. 2019;14(1):e0211492. https://doi.org/10.1371/journal.pone.0211492
  23. 23. Kon E, Ahmed OH, Saamin S, Majid NM. Gamma radiosensitivity study on long bean (Vigna sesquipedalis). Am J Appl Sci. 2007;4(12):1090-3. https://doi.org/10.3844/ajassp.2007.1090.1093
  24. 24. Kumar G, Pandey S, Tiwari NK, Pandey P, Yadav J. Effect of gamma irradiation on morphological biochemical and cytological attributes of Salvia hispanica L. Jordan J Biol Sci. 2024;17(1):67-75. https://doi.org/10.54319/jjbs/170106
  25. 25. Jinyu H, Dong L, Lixia Y, Wenjian L. Pigment analysis of a color-leaf mutant in Wandering Jew (Tradescantia fluminensis) irradiated by carbon ions. Nucl Sci Tech. 2011;22(2):77-83.
  26. 26. Datta SK, Teixeira da Silva JA. Role of induced mutagenesis for development of new flower colour and type in ornamentals. In: da Silva JA, editor. Floriculture, ornamental and plant biotechnology: advances and topical. Vol. 1. UK: Global Science Books; 2006. p. 640-5.
  27. 27. Sharavani CS, Kode SL, Priya T, Bharathi TU, Reddi M, Sekhar CR, et al. Studies on effect of gamma irradiation on survival and growth of tuberose (Polianthes tuberosa L.). Adv Biores. 2019;10(1):109-13. https://doi.10.15515/abr.0976-4585.10.1.109113
  28. 28. Puripunyavanich V, Maikaeo L, Limtiyayothin M, Orpong P. New frontier of plant breeding using gamma irradiation and biotechnology. In: Kumar B, Debut A, editors. Green chemistry-new perspectives. London: IntechOpen; 2022. p. 1-24. https://doi.org/10.5772/intechopen.104667
  29. 29. Salentijn EM, Zhang Q, Amaducci S, Yang M, Trindade LM. New developments in fibre hemp (Cannabis sativa L.) breeding. Ind Crops Prod. 2015;68:32-41. https://doi.org/10.1016/j.indcrop.2014.08.011
  30. 30. Grubesa IN, Markovic B, Gojevic A, Brdaric J. Effect of hemp fibres on fire resistance of concrete. Constr Build Mater. 2018;184:473-84. https://doi.org/10.1016/j.conbuildmat.2018.07.014
  31. 31. Al-Oqla FM, Sapuan SM. Natural fibre reinforced polymer composites in industrial applications: feasibility of date palm fibres for sustainable automotive industry. J Clean Prod. 2014;66:347-54. https://doi.org/10.1016/j.jclepro.2013.10.050
  32. 32. Santoni A, Bonfiglio P, Fausti P, Marescotti C, Mazzanti V, Mollica F, et al. Improving the sound absorption performance of sustainable thermal insulation materials: Natural hemp fibres. Appl Acoust. 2019;150:279–89.
  33. 33. Hesami M, Pepe M, Jones AM. Morphological characterization of Cannabis sativa L. throughout its complete life cycle. Plants. 2023;12(20):3646. https://doi.org/10.3390/plants12203646.
  34. 34. Wupuer B, Niyazi A, Maimaiti H, Xiaolong L, Haomiao W, Huiqin M. Mutagenesis effect of 60Co-γ radiation on the annual branches of different fig varieties. Xinjiang Agric Sci. 2024;61(2):373-81. https://doi.org/10.6048/j.issn.1001-4330.2024.02.013
  35. 35. Radwan R, El-Khateeb MA, Eid RA, Abd El-Aziz NG, Ashour HA. Evaluation of mutation breeding by gamma rays on M3 generation plants for improvement of Gypsophila elegans M. Bieb plant. J Wildl Environ. 2025;3(1):1-28. https://doi.org/10.21608/jow.2025.375460.1007
  36. 36. Talebi AB, Talebi AB, Shahrokhifar B. Ethyl methane sulphonate (EMS) induced mutagenesis in Malaysian rice (cv. MR219) for lethal dose determination. Am J Plant Sci. 2012;3(12):1661-5. https://doi.org/10.4236/ajps.2012.312202.
  37. 37. Kumar PP. Plant hormones and their intricate signaling networks: unraveling the nexus. Plant Cell Rep. 2013;32(6):731-2. https://doi.org/10.1007/s00299-013-1435-0
  38. 38. Kang Y, Wu Q, Pan G, Yang H, Li J, Yang X, Zhong M. High daily light integral positively regulates photosynthetic capacity through mediating nitrogen partitioning and leaf anatomical characteristic in flowering Chinese cabbage. Sci Hortic. 2024;326:112715. https://doi.org/10.1016/j.scienta.2023.112715
  39. 39. Yamaguchi H, Shimizu A, Degi K, Morishita T. Effects of dose and dose rate of gamma ray irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breed Sci. 2008;58(3):331-5. https://doi.org/10.1270/jsbbs.58.331
  40. 40. Widiastuti A, Sobir S, Suhartanto MR. Diversity analysis of mangosteen (Garcinia mangostana) irradiated by gamma-ray based on morphological and anatomical characteristics. Nusantara Biosci. 2010;2(1):23-33. https://doi.org/10.13057/nusbiosci/n020104
  41. 41. Billore V, Mirajkar SJ, Suprasanna P, Jain M. Gamma irradiation induced effects on in vitro shoot cultures and influence of monochromatic light regimes on irradiated shoot cultures of Dendrobium sonia orchid. Biotechnol Rep. 2019;22:e00343. https://doi.org/10.1016/j.btre.2019.e00343
  42. 42. Baig MMQ, Hafiz IA, Abbasi NA, Yaseen M, Akram Z, Donnelly DJ. Reduced-stature Rosa species through in vitro mutagenesis. Can J Plant Sci. 2012;92(6):1049-55. https://doi.org/10.4141/cjps2011-199
  43. 43. Chandrashekar KR, Somashekarappa HM, Souframanien J. Effect of gamma irradiation on germination, growth, and biochemical parameters of Terminalia arjuna Roxb. Radiat Prot Environ. 2013;36(1):38-44. https://doi.org/10.4103/0972-0464.121826
  44. 44. Bosila HA, Hamza MEF. Effect of gamma rays on growth, flowering and chemical content of chrysanthemum plant. J Biol Chem Environ Sci. 2019;14(4):1-5.
  45. 45. Goh EJ, Kim JB, Kim WJ, Ha BK, Kim SH, Kang SY, et al. Physiological changes and anti-oxidative responses of Arabidopsis plants after acute and chronic γ-irradiation. Radiat Environ Biophys. 2014;53:677-93. https://doi.org/10.1007/s00411-014-0562-5
  46. 46. Qi W, Zhang L, Feng W, Xu H, Wang L, Jiao Z. ROS and ABA signaling are involved in the growth stimulation induced by low-dose gamma irradiation in Arabidopsis seedling. Appl Biochem Biotechnol. 2015;175:1490-506. https://doi.org/10.1007/s12010-014-1372-6
  47. 47. Kumar P, Sharma V, Atmaram CK, Singh B. Regulated partitioning of fixed carbon (C), sodium (Na), potassium (K) and glycine betaine determined salinity stress tolerance of gamma irradiated pigeonpea [Cajanus cajan (L.) Millsp]. Environ Sci Pollut Res. 2017;24:7285-97. https://doi.org/10.1007/s11356-017-8406-x.
  48. 48. Andre CM, Hausman JF, Guerriero G. Cannabis sativa: the plant of the thousand and one molecules. Front Plant Sci. 2016;7:19. https://doi.org/10.3389/fpls.2016.00019
  49. 49. Spitzer-Rimon B, Duchin S, Bernstein N, Kamenetsky R. Architecture and florogenesis in female Cannabis sativa plants. Front Plant Sci. 2019;10:350. https://doi.org/10.3389/fpls.2019.00350
  50. 50. Bagheri M, Mansouri H. Effect of induced polyploidy on some biochemical parameters in Cannabis sativa L. Appl Biochem Biotechnol. 2015;175(5):2366-75. https://doi.org/10.1007/s12010-014-1435-8
  51. 51. Schilling S, Melzer R, McCabe PF. Cannabis sativa. Curr Biol. 2020;30(1):R8-9.
  52. 52. Rai A, Bornare SS, Prasad LC, Lal JP, Prasad R. Effect of different dose of gamma rays on two varieties of linseed crop (Linum usitatissimum L.). Vegetos. 2013;26(2):368-71. https://doi.org/10.5958/j.2229-4473.26.2.099
  53. 53. Corthals GL, Gygi SP, Aebersold R, Patterson SD. Identification of proteins by mass spectrometry. In: Rabilloud T, editor. Proteome research: two-dimensional gel electrophoresis and identification methods, principles and practice. Berlin, Heidelberg: Springer; 2000. p. 197-231. https://doi.org/10.1007/978-3-642-57105-3_10
  54. 54. Huchelmann A, Boutry M, Hachez C. Plant glandular trichomes: natural cell factories of high biotechnological interest. Plant Physiol. 2017;175(1):6-22. https://doi.org/10.1104/pp.17.00727
  55. 55. Tanney CA, Backer R, Geitmann A, Smith DL. Cannabis glandular trichomes: A cellular metabolite factory. Front Plant Sci. 2021;12:721986. https://doi.org/10.3389/fpls.2021.721986
  56. 56. Punja ZK, Sutton DB, Kim T. Glandular trichome development, morphology, and maturation are influenced by plant age and genotype in high THC-containing cannabis (Cannabis sativa L.) inflorescences. J Cannabis Res. 2023;5(1):12. https://doi.org/10.1186/s42238-023-00178-9
  57. 57. Celik O, Atak C, Suludere Z. Response of soybean plants to gamma radiation: Biochemical analyses and expression patterns of trichome development. Plant Omics. 2014;7(5):382-91.
  58. 58. Russo EB. Taming THC: potential cannabis synergy and phytocannabinoid‐terpenoid entourage effects. Br J Pharmacol. 2011;163(7):1344-64. https://doi.org/10.1111/j.1476-5381.2011.01238.x

Downloads

Download data is not yet available.