Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Amino acid-chelated micronutrients: A new frontier in crop nutrition and abiotic stress mitigation

DOI
https://doi.org/10.14719/pst.8302
Submitted
17 March 2025
Published
17-06-2025
Versions

Abstract

Micronutrient deficiencies and abiotic stresses, such as drought, salinity and temperature fluctuations, significantly reduce global crop productivity, partly by limiting nutrient bioavailability. While micronutrients are essential for plant metabolism, their precise application is crucial to prevent heavy metal contamination and environmental degradation. Overuse or improper application of micronutrients can lead to toxicity, soil degradation and groundwater contamination. To address these challenges, chelating agents have been introduced into agricultural systems to enhance micronutrient availability and uptake by plants. Amino acid chelates, a class of ‘smart fertilizers’ that bind micronutrients to amino acids, offer an innovative solution to enhance nutrient efficiency and mitigate abiotic stress effects. By enhancing nutrient absorption, promoting antioxidant activity, regulating osmotic balance and supporting enzymatic functions, amino chelates contribute to improved crop health and resilience. This review explores the current challenges in agriculture related to micronutrient deficiencies and abiotic stress, focusing on amino chelates as an advanced solution for improving nutrient uptake and crop resilience. However, there remain uncertainties regarding their synthesis and properties, optimal application rates and interactions with other agricultural inputs. The aim is to provide a comprehensive understanding of amino chelates, their mechanisms and future potential for sustainable agriculture, while emphasizing the need for targeted research to optimize their use in addressing micronutrient deficiencies and abiotic stress.

References

  1. 1. Nair KP. Intelligent soil management for sustainable agriculture: The nutrient buffer power concept. Springer International Publishing; 2019. p. 165-89. https://doi.org/10.1007/978-3-030-15530-8
  2. 2. Dhaliwal SS, Sharma V, Shukla AK. Impact of micronutrients in mitigation of abiotic stresses in soils and plants—A progressive step toward crop security and nutritional quality. Advances in Agronomy. 2022;173:1-78. https://doi.org/10.1016/bs.agron.2022.02.001
  3. 3. Ansari SA, Thapa S. Biofortification of food crops: An approach towards improving nutritional security in South Asia. International Journal of Advances in Agricultural Science and Technology. 2019;6(12):23-33.
  4. 4. Cakmak I, Brown P, Colmenero-Flores JM, Husted S, Kutman BY, Nikolic M. Micronutrients. In: Marschner’s mineral nutrition of plants. Academic Press; 2023. p. 283-385. https://doi.org/10.1016/B978-0-12-819773-8.00017-4
  5. 5. Dominguez Romero SA. A modelling approach: Effects of exuded organic acids and exogenous chelating ligands on bioavailability and uptake of metals by radishes (Raphanus sativus) grown in hydroponics [dissertation]. Electronic Thesis and Dissertation Repository; 2017.
  6. 6. Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure to heavy metals and their impact on health consequences. Journal of Cellular Biochemistry. 2018;119(1):157-84. https://doi.org/10.1002/jcb.26234
  7. 7. Toor MD, Adnan M, Rehman FU, Tahir R, Saeed MS, Khan AU, et al. Nutrients and their importance in agriculture crop production; A review. Indian Journal of Pure & Applied Biosciences. 2021;9(1):1-6. https://doi.org/10.18782/2582-2845.8527
  8. 8. Ram K, Ninama AR, Choudhary R, Solanki BP. A comprehensive review on amino acid chelates: advances and applications in plant nutrition. International Journal of Environment and Climate Change. 2024;14(1):120-7. https://doi.org/10.9734/IJECC/2024/v14i13814
  9. 9. Areche FO, Aguilar SV, More López JM, Castañeda Chirre ET, Sumarriva-Bustinza LA, Pacovilca-Alejo OV, et al. Recent and historical developments in chelated fertilizers as plant nutritional sources, their usage efficiency, and application methods. Brazilian Journal of Biology. 2023;83:e271055. https://doi.org/10.1590/1519-6984.271809
  10. 10. Lucena JJ, Gárate A, Villén M. Stability in solution and reactivity with soils and soil components of iron and zinc complexes. Journal of Plant Nutrition and Soil Science. 2010;173(6):900-6. https://doi.org/10.1002/jpln.200900154
  11. 11. Subramani M, Durairaj J, Thiyagarajan C, Muthumani J. Synthesis of iron chelates for remediation of iron deficiency in an alkaline and calcareous soil. Journal of Applied and Natural Science. 2021;13(SI):149-55. https://doi.org/10.31018/jans.v13iSI.2818
  12. 12. Athira S, Mann B, Sharma R, Pothuraju R, Bajaj RK. Preparation and characterization of iron-chelating peptides from whey protein: An alternative approach for chemical iron fortification. Food Research International. 2021;141:110133. https://doi.org/10.1016/j.foodres.2021.110133
  13. 13. Foley S, Enescu M. A Raman spectroscopy and theoretical study of zinc–cysteine complexation. Vibrational spectroscopy. 2007;44(2):256-65. https://doi.org/10.1016/j.vibspec.2006.12.004
  14. 14. Wagner CC, Baran EJ. Vibrational spectra of Zn (II) complexes of the amino acids with hydrophobic residues. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2009;72(5):936-40. https://doi.org/10.1016/j.saa.2008.12.017
  15. 15. Zhu G, Zhu X, Fan Q, Wan X. Raman spectra of amino acids and their aqueous solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2011;78(3):1187-95. https://doi.org/10.1016/j.saa.2010.12.079
  16. 16. Yin LH, Liu XP, Yi LY, Wang J, Zhang YJ, Feng YF. Structural characterization of calcium glycinate, magnesium glycinate and zinc glycinate. Journal of Innovative Optical Health Sciences. 2017;10(03):1650052. https://doi.org/10.1142/S1793545816500528
  17. 17. Saikumari N. Synthesis and characterization of amino acid Schiff base and its copper (II) complex and its antimicrobial studies. Materials Today: Proceedings. 2021;47:1777-81. https://doi.org/10.1016/j.matpr.2021.02.607
  18. 18. Rodrigues RR, Rocha JT, Oliveira LM, Dias JC, Müller EI, Castro EV, et al. Evaluation of calibration transfer methods using the ATR-FTIR technique to predict density of crude oil. Chemometrics and Intelligent Laboratory Systems. 2017;166:7-13. https://doi.org/10.1016/j.chemolab.2017.04.007
  19. 19. Rajeswari R, Jeyaprakash K. Bioactive potential analysis of brown seaweed Sargassum wightii using UV-VIS and FT-IR. Journal of Drug Delivery and Therapeutics. 2019;9(1):150-3. https://doi.org/10.22270/jddt.v9i1.2199
  20. 20. El-Tabl AS, El-Kousy S, Wahba MA, Khalefa SM. Organic amino acids chelates; preparation, spectroscopic characterization and applications as foliar fertilizers. Journal of Advances in Chemistry. 2014;10(2):2203-17. https://doi.org/10.24297/jac.v10i2.980
  21. 21. Jacob RH, Afify AS, Shanab SM, Shalaby EA, Hafez RM. Optimization of chelating process of amino acids of leather waste and glycine with different minerals and its relationship with Arthrospira platensis biological activities. Waste and Biomass Valorization. 2023;14(12):4215-30. https://doi.org/10.1007/s12649-023-02136-1
  22. 22. Li F, Yao X, Lu L, Jiao Y. Preparation of Zn−Gly and Se−Gly and their effects on the nutritional quality of tea (Camellia sinensis). Plants. 2023;12(5):1049. https://doi.org/10.3390/plants12051049
  23. 23. Berestova TV, Khursan SL, Mustafin AG. Experimental and theoretical substantiation of differences of geometric isomers of copper (II) α-amino acid chelates in ATR-FTIR spectra. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020;229:117950. https://doi.org/10.1016/j.saa.2019.117950
  24. 24. Ahamed SS, Jawahar D, Chitedshwari T, Sharmila DJ. Synthesis and characterization of organic zinc chelates through FT-IR. Journal of Pharmacognosy and Phytochemistry. 2019;8(4):1217-22.
  25. 25. McLaughlin MF, Woodward J, Boll RA, Wall JS, Rondinone AJ, Kennel SJ, et al. Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy. PLoS One. 2013;8(1):e54531. https://doi.org/10.1371/journal.pone.0054531
  26. 26. Zuluaga MY, Cardarelli M, Rouphael Y, Cesco S, Pii Y, Colla G. Iron nutrition in agriculture: From synthetic chelates to biochelates. Scientia Horticulturae. 2023;312:111833. https://doi.org/10.1016/j.scienta.2023.111833
  27. 27. Tabesh M, Kiani S, Khoshgoftarmanesh AH. The effectiveness of seed priming and foliar application of zinc-amino acid chelates in comparison with zinc sulfate on yield and grain nutritional quality of common bean. Journal of Plant Nutrition. 2020;43(14):2106-16. https://doi.org/10.1080/01904167.2020.1771579
  28. 28. Neocleous D, Nikolaou G, Ntatsi G, Savvas D. Impact of chelated or inorganic manganese and zinc applications in closed hydroponic bean crops on growth, yield, photosynthesis, and nutrient uptake. Agronomy. 2020;10(6):881. https://doi.org/10.3390/agronomy10060881
  29. 29. Shenwari KA, Dhevagi P, Chitdeshwari T, Avudainayagam S. Effects of Fe chelates on growth and yield attributes of blackgram on a black calcareous soil. Madras Agricultural Journal. 2018;105(1-3):20-3. https://doi.org/10.29321/MAJ.2018.000095
  30. 30. Vaghar MS, Sayfzadeh S, Zakerin HR, Kobraee S, Valadabadi SA. Foliar application of iron, zinc, and manganese nano-chelates improves physiological indicators and soybean yield under water deficit stress. Journal of Plant Nutrition. 2020;43(18):2740-56. https://doi.org/10. 1080/01904167.2020.1793180
  31. 31. Souri MK, Hatamian M. Amino acid chelates in plant nutrition: a review. Journal of plant nutrition. 2019;42(1):67-78. https://doi.org/10.1080/01904167.2018.1549671
  32. 32. Souri MK, Yarahmadi B. Effect of amino chelates foliar application on growth and development of marigold (Calendula officinalis) plant. 2015;7(2):109-19. https://doi.org/10.1007/s13580-017-0349-0
  33. 33. Noroozlo YA, Souri MK, Delshad M. Stimulation effects of foliar applied glycine and glutamine amino acids on lettuce growth. Open Agriculture. 2019;4(1):164-72. https://doi.org/10.1515/opag-2019-0016
  34. 34. Garcia AL, Madrid R, Gimeno V, Rodriguez-Ortega WM, Nicolas N, Garcia-Sanchez F. The effects of amino acids fertilization incorporated to the nutrient solution on mineral composition and growth in tomato seedlings. Spanish Journal of Agricultural Research. 2011;9(3):852-61. https://doi.org/10.5424/sjar/20110903-399-10
  35. 35. Rizwan M, Ali S, Zaheer Akbar M, Shakoor MB, Mahmood A, Ishaque W, et al. Foliar application of aspartic acid lowers cadmium uptake and Cd-induced oxidative stress in rice under Cd stress. Environmental Science and Pollution Research. 2017;24:21938-47. https://doi.org/10.1007/s11356-017-9860-1
  36. 36. Jalali M. Effect of iron-amino acid chelates on antioxidant capacity and nutritional value of soybean. Plant Productions. 2021;43(4):477-86. https://doi.org/10.22055/ppd.2020.30728.1810
  37. 37. Mohammadipour N, Souri MK. Beneficial effects of glycine on growth and leaf nutrient concentrations of coriander (Coriandrum sativum) plants. Journal of Plant Nutrition. 2019;42(14):1637-44. https://doi.org/10.1080/01904167.2019.1628985
  38. 38. Krishnaraj M, Senthil K, Shanmugasundaram R, Prabhaharan J, Subramanian E. Effect of chelated iron and zinc application on growth and productivity of maize (Zea mays L.) in subtropical climate. Journal of Pharmacognosy and Phytochemistry. 2020;9(6):1212-6. https://doi.org/10.22271/phyto.2020.v9.i6r.13114
  39. 39. Awan ZA, Ramzani PM, Khan LA, Imran A, Khilji SA, Gaafar AR. Mitigating salinity stress and improving cotton productivity through integrative use of gypsum and compost amendments with exogenous proline. Journal of King Saud University-Science. 2024;36(8):103327. https://doi.org/10.1016/j.jksus.2024.103327
  40. 40. Khakpour S, Hajizadeh HS, Hemati A, Bayanati M, Nobaharan K, Chelan EM, et al. The effect of pre-harvest treatment of calcium nitrate and iron chelate on post-harvest quality of apple (Malus domestica Borkh cv. Red Delicious). Scientia Horticulturae. 2022;304:111351. https://doi.org/10.1016/j.scienta.2022.1113511
  41. 41. Rafie MR, Khoshgoftarmanesh AH, Shariatmadari H, Darabi A, Dalir N. Influence of foliar-applied zinc in the form of mineral and complexed with amino acids on yield and nutritional quality of onion under field conditions. Scientia Horticulturae. 2017;216:160-8. https://doi.org/10.1016/j.scienta.2017.01.014
  42. 42. Souri MK. Aminochelate fertilizers: the new approach to the old problem; a review. Open Agriculture. 2016;1(1):118-23. https://doi.org/10.1515/opag-2016-0016
  43. 43. Mirbolook A, Rasouli-Sadaghiani M, Sepehr E, Lakzian A, Hakimi M. Synthesized Zn (II)-amino acid and-chitosan chelates to increase Zn uptake by bean (Phaseolus vulgaris) plants. Journal of Plant Growth Regulation. 2021;40:831-47. https://doi.org/10.1007/s00344-020-10151-y
  44. 44. Nie Z, Wang L, Zhao P, Wang Z, Shi Q, Liu H. Metabolomics reveals the impact of nitrogen combined with the zinc supply on zinc availability in calcareous soil via root exudates of winter wheat (Triticum aestivum). Plant Physiology and Biochemistry. 2023;204:108069. https://doi.org/10.1016/j.plaphy.2023.108069
  45. 45. Xu M, Du L, Liu M, Zhou J, Pan W, Fu H, et al. Glycine-chelated zinc rather than glycine-mixed zinc has lower foliar phytotoxicity than zinc sulfate and enhances zinc biofortification in waxy corn. Food Chemistry. 2022;370:131031. https://doi.org/10.1016/j.foodchem.2021.131031
  46. 46. Thiyagarajan C. Organo Zinc chelates for improving the yield and Zinc nutrition of hybrid tomato on calcareous soil under drip fertigation. Journal of Soil Science and Plant Nutrition. 2022;22:140-9. https://doi.org/10.1007/s42729-021-00639-1
  47. 47. Yeboah S, Asibuo J, Oteng-Darko P, Asamoah Adjei E, Lamptey M, Owusu Danquah E, et al. Impact of foliar application of zinc and magnesium aminochelate on bean physiology and productivity in Ghana. International Journal of Agronomy. 2021;2021(1):9766709. https://doi.org/10.1155/2021/9766709
  48. 48. Bashir S, Basit A, Abbas RN, Naeem S, Bashir S, Ahmed N, et al. Combined application of zinc-lysine chelate and zinc-solubilizing bacteria improves yield and grain biofortification of maize (Zea mays L.). PLoS One. 2021;16(7):e0254647. https://doi.org/10.1371/journal.pone.0254647
  49. 49. Jacob R, Hassan H, Afify A, Gabr G. A novel synthesis chemical characterization and biological activities of metal-leather protein hydrolysate chelates. Fresenius Environmental Bulletin. 2021;30:8717-27. https://doi.org/10.21203/rs.3.rs-172783/v1
  50. 50. Mirbolook A, Rasouli-Sadaghiani M, Sepehr E, Lakzian A, Hakimi M. Fortification of bread wheat with iron through soil and foliar application of iron-organic-complexes. Journal of Plant Nutrition. 2020;44(10):1386-403. https://doi.org/10.1080/01904167.2020.1862206
  51. 51. Adiloğlu S. Relation of chelated iron (EDDHA-Fe) applications with iron accumulation and some plant nutrient elements in basil (Ocimum basilicum L.). Polish Journal of Environmental Studies. 2021;30(4):3471-9. https://doi.org/10.15244/pjoes/128736
  52. 52. Kaewchangwat N, Dueansawang S, Tumcharern G, Suttisintong K. Synthesis of copper-chelates derived from amino acids and evaluation of their efficacy as copper source and growth stimulator for Lactuca sativa in nutrient solution culture. Journal of Agricultural and Food Chemistry. 2017;65(45):9828-37. https://doi.org/10.1021/acs.jafc.7b03809
  53. 53. Trovato M, Funck D, Forlani G, Okumoto S, Amir R. Amino acids in plants: regulation and functions in development and stress defense. Frontiers in Plant Science. 2021;12:772810. https://doi.org/10.3389/fpls.2021.772810
  54. 54. Shekari G, Javanmardi J. Effects of foliar application of pure amino acid and amino acid-containing fertilizer on broccoli (Brassica oleracea L. var. Italica) transplants. Advances in Crop Science and Technology. 2017;5:280. https://doi.org/10.4172/2329-8863.1000280
  55. 55. Zaib M, Zeeshan A, Aslam S, Bano S, Ilyas A, Abbas Z, et al. Drought stress and plants production: a review with future prospects. International Journal of Scientific Research and Engineering Development. 2023;6(04):1278-93. https://doi.org/10.61919/jhrr.v3i2.226
  56. 56. Zafar S, Afzal H, Ijaz A, Mahmood A, Ayub A, Nayab A, et al. Cotton and drought stress: An updated overview for improving stress tolerance. South African Journal of Botany. 2023;161:258-68. https://doi.org/10.1016/j.sajb.2023.08.029
  57. 57. Saddique M, Kausar A, Iqra I, Akhter N, Mujahid N, Parveen A, et al. Amino acids application alleviated salinity stress in spinach (Spinacia oleracea L.) by improving oxidative defense, osmolyte accumulation, and nutrient balance. Turkish Journal of Agriculture and Forestry. 2022;46(6):875-87. https://doi.org/10.55730/1300-011X.3049
  58. 58. Niu T, Zhang J, Li J, Gao X, Ma H, Gao Y, et al. Effects of exogenous glycine betaine and cycloleucine on photosynthetic capacity, amino acid composition, and hormone metabolism in Solanum melongena L. Scientific Reports. 2023;13(1):7626. https://doi.org/10.1038/s41598-023-34509-w
  59. 59. Shahgholi S, Sayfzadeh S, Hadidi Masouleh E, Shahsavari N, Zakerin H. Assessment of zinc, boron, and iron foliar application on wheat yield and yield components under drought stress. Communications in Soil Science and Plant Analysis. 2023;54(9):1283-92. https://doi.org/10.1080/00103624.2022.2141772
  60. 60. Raza S, Zia-ur-Rehman M, Alghamdi SA, Alghanem SM, Usman M, Ahmed R, et al. Effects of zinc-enriched amino acids on rice plants (Oryza sativa L.) for adaptation in saline-sodic soil conditions: Growth, nutrient uptake and biofortification of zinc. South African Journal of Botany. 2023;162:370-80. https://doi.org/10.1016/j.sajb.2023.09.011
  61. 61. Ahanger MA, Ahmad P. Role of mineral nutrients in abiotic stress tolerance: revisiting the associated signaling mechanisms. Plant Signaling Molecules. 2019:269-85. https://doi.org/10.1016/B978-0-12-816451-8.00016-2
  62. 62. Ayyoub A, Ali Q, Zafar S, Zhanakhmetova D, Afzal B, Liesche J. The dual function of lysine as iron-chelator and active compound benefits productivity and drought tolerance of Nigella sativa L. Journal of Plant Growth Regulation. 2024;43:1801-13. https://doi.org/10.1007/s00344-023-11217-3
  63. 63. Arcuri MD, Nunes-Laitz AV, Lima RP, Barreto P, Marinho AN, Arruda P, et al. Knockdown of mitochondrial uncoupling proteins 1 and 2 (AtUCP1 and 2) in Arabidopsis thaliana impacts vegetative development and fertility. Plant and Cell Physiology. 2021;62(10):1630-44. https://doi.org/10.1093/pcp/pcab117
  64. 64. Ali Q, Ali S, El-Esawi MA, Rizwan M, Azeem M, Hussain AI, et al. Foliar spray of Fe-Asp confers better drought tolerance in sunflower as compared with FeSO4: Yield traits, osmotic adjustment, and antioxidative defense mechanisms. Biomolecules. 2020;10(9):1217. https://doi.org/10.3390/biom10091217
  65. 65. Shrivastava P, Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences. 2015;22(2):123-31. https://doi.org/10.1016/j.sjbs.2014.12.001
  66. 66. Aghighi Shahverdi M, Omidi H, Damalas CA. Foliar fertilization with micronutrients improves Stevia rebaudiana tolerance to salinity stress by improving root characteristics. Brazilian Journal of Botany. 2020;43(1):55-65. https://doi.org/10.1007/s40415-020-00588-6
  67. 67. Ghasemi S, Khoshgoftarmanesh AH, Afyuni M, Hadadzadeh H. Iron (II)–amino acid chelates alleviate salt-stress induced oxidative damages on tomato grown in nutrient solution culture. Scientia Horticulturae. 2014;165:91-8. https://doi.org/10.1016/j.scienta.2013.10.037.
  68. 68. Sh Sadak M, Abdelhamid MT, Schmidhalter U. Effect of foliar application of aminoacids on plant yield and some physiological parameters in bean plants irrigated with seawater. Acta Biológica Colombiana. 2015;20(1):141-52. https://doi.org/10.15446/abc.v20n1.42865
  69. 69. Abdul-Qados AM. Effect of arginine on growth, yield and chemical constituents of wheat grown under salinity condition. Academic Journal of Plant Sciences. 2009;2(4):267-78.
  70. 70. Allen LH. Advantages and limitations of iron amino acid chelates as iron fortificants. Nutrition Reviews. 2002;60(suppl_7):S18-21. https://doi.org/10.1301/002966402320285047
  71. 71. Sun X, Sarteshnizi RA, Boachie RT, Okagu OD, Abioye RO, Pfeilsticker Neves R, et al. Peptide–mineral complexes: Understanding their chemical interactions, bioavailability, and potential application in mitigating micronutrient deficiency. Foods. 2020;9(10):1402. https://doi.org/10.3390/foods9101402
  72. 72. Fahimi F, Souri MK, Yaghobi F. Growth and development of greenhouse cucumber under foliar application of Biomin and Humifolin fertilizers in comparison to their soil application and NPK. Journal of Science and Technology of Greenhouse Culture. 2016;17(1):143-52. https://doi.org/10.18869/acadpub.ejgcst.7.1.143
  73. 73. Colla G, Nardi S, Cardarelli M, Ertani A, Lucini L, Canaguier R, et al. Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae. 2015;196:28-38. https://doi.org/10.1016/j.scienta.2015.08.037
  74. 74. Kalaiselvan G, Senthil K, Shanmugasundaram R, Yuvaraja A, Saravanan S, Prabhaharan J, et al. Amino acid chelated zinc on growth and yield of Cumbu napier hybrid grass-CO (BN) 5. The Pharma Innovation Journal. 2021;10:1861-5.
  75. 75. Jawahar D, Murali S, Jayasundara SHD, Sivakumar K. Synthesis and characterization of iron chelates using organic and amino acids as a chelating agents and evaluation of their efficiency in improving the growth, yield and quality of blackgram: Synthesis and evaluation of iron chelates. Journal of AgriSearch. 2021;8(4):325-30. https://doi.org/10.21921/jas.v8i04.7748
  76. 76. Mahmoud Soltani S, Hossieni Chaleshtori M, Tajaddodi Talab K, Shokri Vahed H, Shakoori Katigari M. Rice growth improvement, bio-fortification, and mitigation of macronutrient requirements through foliar application of zinc and iron-glycine chelate and zinc sulfate. Journal of Plant Nutrition. 2023;46(8):1777-86. https://doi.org/10.1080/01904167.2022.2099894
  77. 77. Seddigh M, Khoshgoftarmanesh AH, Ghasemi S. The effectiveness of seed priming with synthetic zinc-amino acid chelates in comparison with soil-applied ZnSO4 in improving yield and zinc availability of wheat grain. Journal of Plant Nutrition. 2016;39(3):417-27. https://doi.org/10.1080/01904167.2015.1069340
  78. 78. Mirbolook A, Lakzian A, Rasouli Sadaghiani M, Sepehr E, Hakimi M. Fortification of bread wheat using synthesized Zn-Glycine and Zn-Alanine chelates in comparison with ZnSO4 in a calcareous soil. Communications in Soil Science and Plant Analysis. 2020;51(8):1048-64. https://doi.org/10.22067/jsw.v34i5.84738
  79. 79. Denisov K, Kibalnik O, Efremova I, Bochkareva J. The application of chelated forms of micronutrient fertilizers in sorghum cultivation. In: IOP Conference Series: Earth and Environmental Science. Vol. 723(2). IOP Publishing; 2021. p. 022017. https://doi.org/10.1088/1755-1315/723/2/022017
  80. 80. Qadir MA, Ahmed M, Malik MK, Ismail I. Sorghum stalk yield and grain nutritional quality improvement by foliar metal chelates. Pakistan Journal of Botany. 2017;49(1):109-14.
  81. 81. Habashy NR, Mikhail MI, Ragab AA. Effect of foliar or soil application of some mineral and chelated micronutrient forms on the yield and its components of peanut and maize grown on sandy soil. Fayoum Journal of Agricultural Research and Development. 2006;20(1):9-24. https://doi.org/10.21608/fjard.2006.197562
  82. 82. Mazhar MW, Akram R, Shahid A. Foliar application of iron glutamate improves yield and growth of tomatoes compared to iron sulphate and L-glutamate. International Journal of Vegetable Science. 2022;28(6):511-20. https://doi.org/10.1080/19315260.2022.2046673
  83. 83. Souri MK, Sooraki FY, Moghadamyar M. Growth and quality of cucumber, tomato, and green bean under foliar and soil applications of an aminochelate fertilizer. Horticulture, Environment, and Biotechnology. 2017;58:530-6. https://doi.org/10.1007/s13580-017-0349-0
  84. 84. Panahi B, Damankeshan B, Asaadi M. Evaluation of amino chelate applications that reduce symptoms of date palm bunch fading disorder. International Journal of Horticultural Science and Technology. 2023;10(1):69-76. https://doi.org/10.22059/ijhst.2022.319862.446
  85. 85. Saini S, Kumar P, Sharma DP, Sharma NC, Chauhan A, Shandil D. Organic Zn and nano-Zn amino acids chelates modulate quality growth attributes and antioxidants activity for biofortified apple (Malus × domestica Borkh.) production. Scientia Horticulturae. 2024;337:113594. https://doi.org/10.1016/j.scienta.2024.113594
  86. 86. Soliman YM, Abdul-Hafeez EY, Ibrahim OH, Soliman T. Foliar application of glycine and/or zinc enhances vegetative, fruit and essential oil characters of Cuminum cyminum L. under different planting methods. Assiut Journal of Agricultural Sciences. 2023;54(1):66-84. https://doi.org/10.21608/ajas.2023.179808.1209
  87. 87. Najizadeh A, Khoshgoftarmanesh AH. Effects of foliar applied zinc in the form of ZnSO4 and Zn-amino acid complexes on pistachio nut yield and quality. Journal of Plant Nutrition. 2019;42(18):2299-309. https://doi.org/10.1080/01904167.2019.1655043
  88. 88. Ummer K, Ali L, Hafeez HT, Ahmed F, Nisar I, Iqbal MA, et al. Impact of Zn-lysine chelation foliar application in wheat plants under drought stress. Agrobiological Records. 2024;16:19-32. https://doi.org/10.47278/journal.abr/2024.008
  89. 89. Elshamly AM, Iqbal R, Ali B, Ahmed I, Akram MI, Ali S, et al. Zinc and amino acids improve the growth, physiological, and biochemical attributes of corn under different irrigation levels. Rhizosphere. 2024;29:100820. https://doi.org/10.1016/j.rhisph.2023.100820
  90. 90. Repke RA, Silva DM, dos Santos JC, de Almeida Silva M. Alleviation of drought stress in soybean by applying a biostimulant based on amino acids and macro-and micronutrients. Agronomy. 2022;12(10):2244. https://doi.org/10.3390/agronomy12102244
  91. 91. Ahmad R, Ishaque W, Khan M, Ashraf U, Riaz MA, Ghulam S, et al. Relief role of lysine chelated zinc (Zn) on 6-week-old maize plants under tannery wastewater irrigation stress. International Journal of Environmental Research and Public Health. 2020;17(14):5161. https://doi.org/10.3390/ijerph17145161
  92. 92. Zaheer IE, Ali S, Saleem MH, Yousaf HS, Malik A, Abbas Z, et al. Combined application of zinc and iron-lysine and its effects on morpho-physiological traits, antioxidant capacity and chromium uptake in rapeseed (Brassica napus L.). PLoS One. 2022;17(1):e0262140. https://doi.org/10.1371/journal.pone.0262140
  93. 93. Bashir A, Rizwan M, Ali S, Zia ur Rehman M, Ishaque W, Atif Riaz M, et al. Effect of foliar-applied iron complexed with lysine on growth and cadmium (Cd) uptake in rice under Cd stress. Environmental Science and Pollution Research. 2018;25:20691-9. https://doi.org/10.1007/s11356-018-2042-y
  94. 94. Talaat NB, Mostafa AA, El-Rahman SN. A novel plant growth-promoting agent mitigates salt toxicity in barley (Hordeum vulgare L.) by activating photosynthetic, antioxidant defense, and methylglyoxal detoxification machineries. Journal of Soil Science and Plant Nutrition. 2023;23(1):308-24. https://doi.org/10.1007/s42729-022-00993-8
  95. 95. Jan M, Anwar-ul-Haq M, Shah AN, Yousaf M, Iqbal J, Li X, et al. Modulation in growth, gas exchange, and antioxidant activities of salt-stressed rice (Oryza sativa L.) genotypes by zinc fertilization. Arabian Journal of Geosciences. 2019;12:1-7. https://doi.org/10.1007/s12517-019-4939-2
  96. 96. Matysiak K, Kierzek R, Siatkowski I, Kowalska J, Krawczyk R, Miziniak W. Effect of exogenous application of amino acids L-arginine and glycine on maize under temperature stress. Agronomy. 2020;10(6):769. https://doi.org/10.3390/agronomy10060769

Downloads

Download data is not yet available.