Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 4 (2025)

Nutrient stress in plant cells: Mechanisms, adaptations and implications for crop resilience

DOI
https://doi.org/10.14719/pst.8418
Submitted
20 March 2025
Published
19-11-2025 — Updated on 04-12-2025
Versions

Abstract

Nutrient stress, caused by a lack of necessary macronutrients such as nitrogen, phosphate and potassium and micronutrients such as iron, zinc and copper, is a major environmental issue that has an impact on plant health, growth and agricultural output. The purpose of this study is to currently understand the molecular, cellular and physiological mechanisms used by plants to perceive, respond to and adapt to nutrient limitations. We investigate the complex signalling networks involved in nutrition sensing, as well as the adaptive methods that maintain cellular homeostasis, such as root architectural remodelling, nutrient recycling via autophagy and antioxidant defence mechanisms. A significant focus is on phytohormones such auxins, cytokinins and jasmonates, which mediate nutritional stress responses. We additionally emphasize emerging technologies, such as CRISPR-based gene editing and sophisticated omics methods (transcriptomics, proteomics and metabolomics), which provide new opportunities for producing crops with higher nutrient use efficiency and stress tolerance. This review emphasizes the importance of interdisciplinary research that integrates fundamental molecular biology with applied agricultural strategies, providing solutions to improve crop yields under nutrient-limited conditions, especially in the face of climate change and soil degradation. The application of these results in agriculture has the potential to improve food security and promote sustainable farming techniques.

References

  1. 1. Marschner H. Mineral nutrition of higher plants. 3rd ed. Academic Press; 2012.
  2. 2. Mengel K, Kirkby EA. Principles of plant nutrition. 5th ed. Springer; 2001. https://doi.org/10.1007/978-94-010-1009-2
  3. 3. Hawkesford MJ, Barraclough P, Brown P, Riche A, Yeo A, Dupuy LX, et al. Functions of macronutrients and micronutrients. In: Molecular plant nutrition. Wiley-Blackwell; 2011.
  4. 4. López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L. Nutrient availability modulates root system architecture. Trends Plant Sci. 2003;8(11):534–40.
  5. 5. Hermans C, Hammond JP, White PJ, Verbruggen N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 2006;11(12):610–7. https://doi.org/10.1016/j.tplants.2006.10.007
  6. 6. Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rabbinge R. Revisiting fertilisers and fertilisation strategies for improved nutrient use efficiency. Adv Agron. 2015;130:1–65.
  7. 7. FAO. Status of the world’s soil resources. Food and Agriculture Organization of the United Nations; 2015.
  8. 8. Oldfield EE, Bradford MA, Wood SA. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil Biol Biochem. 2019;129:105–13. https://doi.org/10.5194/soil-5-15-2019
  9. 9. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. Nutritional limitations of crops: roles of mineral nutrients in crop yield and quality. J Exp Bot. 2012;63(2):539–52.
  10. 10. Zhao FJ, Ma JF, Zhu YG, Tang Z, McGrath SP. Micronutrient deficiencies in crops and humans. Ann Rev Plant Biol. 2022;73:225–53.
  11. 11. Medici A, Szponarski W, Dangeville P, Safi A, Dissanayake IM, Saenchai C, et al. Identification of genes involved in root responses to nitrogen availability using a systems biology approach. Proc Natl Acad Sci USA. 2015;112(13):3859–64.
  12. 12. Giehl RFH, von Wirén N. Root nutrient foraging. Plant Physiol. 2014;166(2):509–17. https://doi.org/10.1104/pp.114.245225
  13. 13. Rengel Z, Batten GD, Crowley DE. Improving nutrient use efficiency in crops. Adv Agron. 2011;114:205–36.
  14. 14. Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y, et al. The role of auxin transporters in nutrient stress responses. Plant Cell Environ. 2007;30(6):843–54.
  15. 15. Zhang H, Rong H, Pilbeam D. Genetic engineering for improved nutrient use efficiency in crop plants. Curr Opin Biotechnol. 2021;70:89–98.
  16. 16. Liu Y, Bassham DC. TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS One. 2010;5(7):e11883. https://doi.org/10.1371/journal.pone.0011883
  17. 17. Plaxton WC, Tran HT. Metabolic adaptations of phosphate-starved plants. Plant Physiol. 2011;156(3):1006–15. https://doi.org/10.1104/pp.111.175281
  18. 18. Lynch JP. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol. 2011;156(3):1041–9. https://doi.org/10.1104/pp.111.175414
  19. 19. Wang Z, Ruan W, Shi J, Zhang L, Xiang D, Yang C, et al. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proc Natl Acad Sci USA. 2014;111(41):14953–8. https://doi.org/10.1073/pnas.1404680111
  20. 20. Mora-Macías J, Ojeda-Rivera JO, Gutiérrez-Alanís D, Yong-Villalobos L, Oropeza-Aburto A, Raya-González J, et al. Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proc Natl Acad Sci USA. 2017;114(17):E3563–70. https://doi.org/10.1073/pnas.1701952114
  21. 21. Giehl RFH, von Wirén N. Root nutrient foraging. Plant Physiol. 2014;166(2):509–17. https://doi.org/10.1104/pp.114.245225
  22. 22. Connolly EL, Fett JP, Guerinot ML. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell. 2003;15(10):2333–40.
  23. 23. Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell. 2002;14(6):1223–33. https://doi.org/10.1105/tpc.001388
  24. 24. Robinson NJ, Procter CM, Connolly EL, Guerinot ML. A ferric-chelate reductase for iron uptake from soils. Nature. 1999;397(6721):694–7. https://doi.org/10.1038/17800
  25. 25. Kobayashi T, Nishizawa NK. Iron uptake, translocation, and regulation in higher plants. Ann Rev Plant Biol. 2012;63:131–52. https://doi.org/10.1146/annurev-arplant-042811-105522
  26. 26. Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature. 2001;409:346–9. https://doi.org/10.1038/35053080
  27. 27. Tanaka M, Fujiwara T. Physiological roles and transport mechanisms of boron: perspectives from plants. Pflugers Arch. 2008;456(4):671–7. https://doi.org/10.1007/s00424-007-0370-8
  28. 28. Miwa K, Fujiwara T. Boron transport in plants: coordinated regulation of transporters. Ann Bot. 2010;105(7):1103–8. https://doi.org/10.1093/aob/mcq044
  29. 29. Pandey N, Gupta B, Pathak GC. Role of boron in plant development and its responses to boron stress. Biol Plant. 2011;55(3):581–90.
  30. 30. Camacho-Cristóbal JJ, Rexach J, González-Fontes A. Boron in plants: deficiency and toxicity. J Integr Plant Biol. 2008;50(10):1247–55. https://doi.org/10.1111/j.1744-7909.2008.00742.x
  31. 31. White PJ, Brown PH. Plant nutrition for sustainable development and global health. Ann Bot. 2010;105:1073–80. https://doi.org/10.1093/aob/mcq085
  32. 32. Kim HS, Kim KR, Yang JE, Ok YS, Owens G, Nehls T, et al. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere. 2016;142:153–9. https://doi.org/10.1016/j.chemosphere.2015.06.041
  33. 33. Krouk G, Ruffel S, Gutiérrez RA, Gojon A, Crawford NM, Coruzzi GM. A framework integrating plant growth with hormones and nutrients. Trends Plant Sci. 2011;16:178–82. https://doi.org/10.1016/j.tplants.2011.02.004
  34. 34. Gruber BD, Giehl RFH, Friedel S, von Wirén N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 2013;163:161–79. https://doi.org/10.1104/pp.113.218453
  35. 35. Maathuis FJM. Physiological functions of mineral macronutrients. Curr Opin Plant Biol. 2009;12:250–8. https://doi.org/10.1016/j.pbi.2009.04.003
  36. 36. Bouain N, Kisko M, Rouached A, Dauzat M, Lacombe B, Belgaroui N, et al. Phosphate/zinc interaction analysis in two lettuce varieties reveals contrasting effects on biomass, photosynthesis, and dynamics of Pi transport. Biomed Res Int. 2014;2014:548254. https://doi.org/10.1155/2014/548254
  37. 37. Zheng L, Huang F, Narsai R, Wu J, Giraud E, He F, et al. Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol. 2009;151:262–74. https://doi.org/10.1104/pp.109.141051
  38. 38. Baxter I. Ionomics: studying the social network of mineral nutrients. Curr Opin Plant Biol. 2009;12:381–6. https://doi.org/10.1016/j.pbi.2009.05.002
  39. 39. Kellermeier F, Armengaud P, Seditas TJ, Danku J, Salt DE, Amtmann A. Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell. 2014;26:1480–96. https://doi.org/10.1105/tpc.113.122101
  40. 40. Brumbarova T, Ivanov R. The nutrient response transcriptional regulome of Arabidopsis. iScience. 2019;19:358–68. https://doi.org/10.1016/j.isci.2019.07.045
  41. 41. Courbet G, Gallardo K, Vigani G, Brunel-Muguet S, Trouverie J, Salon C. Disentangling the complexity and diversity of crosstalk between sulfur and other mineral nutrients in cultivated plants. J Exp Bot. 2019;70:4183–96. https://doi.org/10.1093/jxb/erz214
  42. 42. Val-Torregrosa B, Bundó M, San Segundo B. Crosstalk between nutrient signalling pathways and immune responses in rice. Agriculture. 2021;11(8):747. https://doi.org/10.3390/agriculture11080747
  43. 43. Fan X, Zhou X, Chen H, Tang M, Xie X. Cross-talks between macro- and micronutrient uptake and signaling in plants. Front Plant Sci. 2021;12:663477. https://doi.org/10.3389/fpls.2021.663477
  44. 44. Iqbal A, Iqbal M, Alamzeb M, Fahad S, Akmal M, Anwar S, et al. Cross-talk between phytohormone-signalling pathways under abiotic stress conditions. In: Plant growth regulators for climate-smart agriculture. CRC Press; 2021.
  45. 45. Loyola-Vargas VM, Ochoa-Alejo N. Plant cell culture protocols. In: Methods in molecular biology. Vol. 877. Springer; 2012. https://doi.org/10.1007/978-1-61779-818-4
  46. 46. Thorpe TA. History of plant tissue culture. Mol Biotechnol. 2007;37(2):169–80. https://doi.org/10.1007/s12033-007-0031-3
  47. 47. George EF, Hall MA, De Klerk GJ. Plant propagation by tissue culture. Springer; 2008. https://doi.org/10.1007/978-1-4020-5005-3
  48. 48. Murthy HN, Murch SJ, Saxena PK. Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tiss Organ Cult. 2014;118:1–16. https://doi.org/10.1007/s11240-014-0467-7
  49. 49. Niazian M, Seifollahi-Aghmiuni S, Movahedi A. Effects of nutrient concentration and culture medium renewal rate on in vitro shoot growth and multiplication of walnut (Juglans regia L.). Plant Cell Tiss Organ Cult. 2019;136:533–46.
  50. 50. Yamada Y, Sato T. Mechanical properties of cell walls in plant tissue culture. Plant Biotechnol. 2002;19(1):41–5.
  51. 51. Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqui KS. Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng Life Sci. 2020;20(6):351–64.
  52. 52. Epstein E. Silicon: its manifold roles in plants. Ann Appl Biol. 2009;155(2):155–60. https://doi.org/10.1111/j.1744-7348.2009.00343.x
  53. 53. Ma JF, Yamaji N. Functions and transport of silicon in plants. Cell Mol Life Sci. 2008;65(19):3049–57. https://doi.org/10.1007/s00018-008-7580-x
  54. 54. Vera-Sirera F, Cominelli E, Pérez-Amador MA. Lignification: a role for cell wall reinforcement in plant immunity. Front Plant Sci. 2015;6:1–7.
  55. 55. Guerriero G, Hausman JF, Legay S. Silicon and the plant extracellular matrix. Front Plant Sci. 2016;7:463. https://doi.org/10.3389/fpls.2016.00463
  56. 56. Lux A, Morita S, Abe J, Ito K. Mechanisms of calcium oxalate crystal formation in plants. Plant Physiol. 2002;128(1):121–9.
  57. 57. Coskun D, Britto DT, Shi W, Kronzucker HJ. How plant roots deal with toxic metals. Trends Plant Sci. 2019;24(8):653–68.
  58. 58. Raven JA, Knight CA, Smith FA. Silicon deposition and its role in plant evolution. Ann Bot. 2018;121(1):1–11.
  59. 59. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, et al. A silicon transporter in Oryza sativa. Nature. 2015;440(7084):688–91. https://doi.org/10.1038/nature04590
  60. 60. González-García R, De La Cruz J, Pérez-Mendoza D, Aguilar-Hernández S. Perfusion bioreactors in plant tissue culture: advances and applications. Plant Cell Tiss Organ Cult. 2021;146:257–73.
  61. 61. Pandey R, Vengavasi K, Hawkesford MJ. Plant adaptation to nutrient stress. Plant Physiol Rep. 2021;26:583–6. https://doi.org/10.1007/s40502-021-00636-7
  62. 62. Wellen KE, Thompson CB. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell. 2010;40(2):323–32. https://doi.org/10.1016/j.molcel.2010.10.004
  63. 63. Sutherland R, Freyer J, Mueller-Klieser W, Wilson R, Heacock C, Sciandra J. Cellular growth and metabolic adaptations to nutrient stress environments in tumor microregions. Int J Radiat Oncol Biol Phys. 1986;12(4):611–5. https://doi.org/10.1016/0360-3016(86)90070-2
  64. 64. Kobayashi M, Matoh T, Azuma J. Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol. 1996;110:1017–20. https://doi.org/10.1104/pp.110.3.1017
  65. 65. O’Neill MA, Ishii T, Albersheim P, Darvill AG. Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol. 2004;55:109–39. https://doi.org/10.1146/annurev.arplant.55.031903.141750
  66. 66. Fleischer A, O’Neill MA, Ehwald R. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol. 1999;121:829–38. https://doi.org/10.1104/pp.121.3.829
  67. 67. Ryden P, Sugimoto-Shirasu K, Smith AC, Findlay K, Reiter WD, McCann MC. Tensile properties of Arabidopsis thaliana cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes. Plant Physiol. 2003;132:1033–40. https://doi.org/10.1104/pp.103.021873
  68. 68. Matoh T. Boron in plant cell walls. Plant Soil. 1997;193:59–70. https://doi.org/10.1023/A:1004207824251
  69. 69. Ishii T, Matsunaga T, Hayashi N. Formation of rhamnogalacturonan II-borate dimer in pectin determines cell wall thickness of pumpkin tissue. Plant Physiol. 2001;126:1698–705. https://doi.org/10.1104/pp.126.4.1698
  70. 70. O’Neill MA, Eberhard S, Albersheim P, Darvill AG. Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis thaliana growth. Science. 2001;294:846–9. https://doi.org/10.1126/science.1062319
  71. 71. Noguchi K, Ishii T, Matsunaga T, Kakegawa K, Hayashi H, Fujiwara T. Biochemical properties of the cell wall in the Arabidopsis mutant bor1-1 in relation to boron nutrition. J Plant Nutr Soil Sci. 2003;166:175–8. https://doi.org/10.1002/jpln.200390025
  72. 72. Stangoulis J, Tate M, Graham R, Bucknall M, Palmer L, Boughton B, et al. The mechanism of boron mobility in wheat and canola phloem. Plant Physiol. 2010;153:876–81. https://doi.org/10.1104/pp.110.155655
  73. 73. Michaeli S, Galili G, Genschik P, Kim H. Autophagy in plants – what’s new on the menu? Trends Plant Sci. 2016;21(2):134–44. https://doi.org/10.1016/j.tplants.2015.10.008
  74. 74. Li F, Vierstra RD. Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci. 2012;17(9):526–37. https://doi.org/10.1016/j.tplants.2012.05.006
  75. 75. Wang P, Nolan TM, Yin Y, Bassham DC. Chloroplast degradation during starvation is regulated via autophagy in Arabidopsis thaliana. Plant Cell. 2013;25(11):4539–45.
  76. 76. Izumi M, Hidema J, Makino A, Ishida H. Chloroplast autophagy and degradation by plastid-to-vacuole transport in Arabidopsis thaliana. Autophagy. 2017;13(5):869–70.
  77. 77. Guiboileau A, Yoshimoto K, Soulay F, Bataillé MP, Avice JC, Masclaux-Daubresse C. Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis thaliana. New Phytol. 2012;194(3):732–40. https://doi.org/10.1111/j.1469-8137.2012.04084.x
  78. 78. Chung T, Phillips AR, Vierstra RD. ATG8 is essential for autophagic nutrient recycling in Arabidopsis thaliana. Plant Cell. 2010;22(8):2979–84.
  79. 79. Pottier M, Dumont J, Masclaux-Daubresse C, Yoshimoto K. Autophagy is essential for iron remobilization from leaves to seeds in Arabidopsis thaliana. New Phytol. 2019;223(1):236–49. https://doi.org/10.1093/jxb/ery388
  80. 80. Xia H, Chen L, Wang F, Ji L, Liu Y, Fan X, Yang X. Autophagy contributes to zinc remobilization in Arabidopsis thaliana during zinc deficiency. Plant Sci. 2020;291:110342.
  81. 81. Guiboileau A, Sormani R, Meyer C, Masclaux-Daubresse C. Physiological and metabolic consequences of autophagy deficiency for nitrogen remobilization in Arabidopsis thaliana during leaf senescence. J Exp Bot. 2013;64(4):1285–91.
  82. 82. Masclaux-Daubresse C, Chen Q, Havé M. Autophagy controls nitrogen remobilization and influences plant development and seed production. Plant Physiol. 2017;175(2):1171–3.
  83. 83. Qin L, Gu S, Liu M, Yu J, Tang C, Zhu Y, et al. A wheat calcium-dependent protein kinase TaCPK2 positively regulates drought stress tolerance in transgenic Nicotiana tabacum. Front Plant Sci. 2018;9:428.
  84. 84. Chen Q, Soulay F, Saudemont B, Elmayan T, Marmagne A, Masclaux-Daubresse C. Overexpression of ATG8 interacting protein 1 modulates autophagy and senescence in Arabidopsis thaliana. Front Plant Sci. 2019;10:909.
  85. 85. Lornac A, Havé M, Lefebvre V, Chardon F, Masclaux-Daubresse C. Involvement of autophagy in nitrogen remobilization during grain filling in Zea mays L. Plant Sci. 2022;317:111190.
  86. 86. Zhao Y, Li L, Chen L, Xu S, Xu Y, Yang F, et al. Autophagy regulates chloroplast degradation and senescence in response to nitrogen deficiency in Oryza sativa. J Exp Bot. 2021;72(17):6523–35.
  87. 87. McLoughlin F, Kim M, Marshall RS, Vierstra RD. Building the ATG8 interactome: conserved and novel functions for ATG8 in autophagy. Annu Rev Plant Biol. 2020;71:499–521.
  88. 88. Bassham DC. Plant autophagy—more than a starvation response. Curr Opin Plant Biol. 2007;10(6):587–93. https://doi.org/10.1016/j.pbi.2007.06.006
  89. 89. Minina EA, Bozhkov PV, Hofius D. Autophagy as initiator or executioner of cell death. Trends Plant Sci. 2014;19(11):692–7. https://doi.org/10.1016/j.tplants.2014.07.007
  90. 90. Yoshimoto K. Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol. 2012;53(8):1355–65. https://doi.org/10.1093/pcp/pcs099
  91. 91. Tewari RK, Hadacek F, Sassmann S, Lang I. Iron deprivation-induced reactive oxygen species generation leads to non-autolytic programmed cell death in Brassica napus leaves. Environ Exp Bot. 2013;91:74–83. https://doi.org/10.1016/j.envexpbot.2013.03.006
  92. 92. Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011;155:2–18. https://doi.org/10.1104/pp.110.167569
  93. 93. Tewari RK, Yadav N, Gupta R, Kumar P. Oxidative stress under macronutrient deficiency in plants. J Soil Sci Plant Nutr. 2021;21:832–59. https://doi.org/10.1007/s42729-020-00405-9
  94. 94. Zhang Z, Lynch JP, Zhang B, Wang Q. NPK deficiency modulates oxidative stress in plants. In: Plant macronutrient use efficiency. Elsevier; 2017. p. 245–65. https://doi.org/10.1016/B978-0-12-811308-0.00014-4
  95. 95. Ihtisham M, Mirza H, Ahmed H, El-Sappah F, Fawad Z, Nawab K, et al. Primary plant nutrients modulate reactive oxygen species metabolism and mitigate cold stress in overseeded Lolium perenne. Front Plant Sci. 2023;14:1149832. https://doi.org/10.3389/fpls.2023.1149832
  96. 96. Gupta R, Verma N, Tewari RK. Micronutrient deficiency-induced oxidative stress in plants. Plant Cell Rep. 2024;43:213. https://doi.org/10.1007/s00299-024-03297-6
  97. 97. López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol. 2003;6:280–7. https://doi.org/10.1016/S1369-5266(03)00035-9
  98. 98. Péret B, Desnos T, Jost R, Kanno S, Berkowitz O, Nussaume L. Root architecture responses: In search of phosphate. Plant Physiol. 2011;156(3):1040–52.
  99. 99. Zhang H, Forde BG. Regulation of Arabidopsis thaliana root development by nitrate availability. J Exp Bot. 2007;58(4):963–70.
  100. 100. Goldbach HE, Wimmer MA. Boron in plants and animals: is there a role beyond cell-wall structure? J Plant Nutr Soil Sci. 2007;170:39–48. https://doi.org/10.1002/jpln.200625161
  101. 101. Romera FJ, Alcántara E. Ethylene involvement in the regulation of Fe deficiency stress responses by Strategy I plants. Funct Plant Biol. 2004;31(4):315–28. https://doi.org/10.1071/FP03165
  102. 102. Schmidt W. Iron stress responses in roots of Arabidopsis thaliana: a proteomic approach. Plant Physiol Biochem. 2003;41(3):273–81.
  103. 103. Nacry P, Bouguyon E, Gojon A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil. 2013;370:1–29. https://doi.org/10.1007/s11104-013-1645-9
  104. 104. Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. Academic Press; 2008.
  105. 105. Lepetit M, Brouquisse R. Control of the rhizobium-legume symbiosis by the plant nitrogen demand is tightly integrated at the whole plant level and requires inter-organ systemic signaling. Front Plant Sci. 2023;14:1114840. https://doi.org/10.3389/fpls.2023.1114840
  106. 106. Jeudy C, Sandrine R, Sandra F, Pascal T, Anne Lise S, Sylvain M, et al. Adaptation of Medicago truncatula to nitrogen limitation is modulated via local and systemic nodule developmental responses. New Phytol. 2010;185:817–28. https://doi.org/10.1111/j.1469-8137.2009.03103.x
  107. 107. Lambert I, Marjorie P, Antoine L, Gilles C, Marc T, Dany S, et al. Responses of mature symbiotic nodules to the whole-plant systemic nitrogen signaling. J Exp Bot. 2020;71:5039–52. https://doi.org/10.1093/jxb/eraa221
  108. 108. Lepetit M, Brouquisse R. New insights into the control of symbiotic nitrogen fixation by carbon supply. Mol Plant. 2023;16:1724–6. https://doi.org/10.1016/j.molp.2023.09.021
  109. 109. Yeremko L, Czopek K, Staniak M, Marenych M, Hanhur V. Role of environmental factors in legume-rhizobium symbiosis: a review. Biomolecules. 2025;15(1):118. https://doi.org/10.3390/biom15010118
  110. 110. Patriarca EJ, Tatè R, Iaccarino M. Key role of bacterial NH₄⁺ metabolism in rhizobium-plant symbiosis. Microbiol Mol Biol Rev. 2002;66:203–22. https://doi.org/10.1128/MMBR.66.2.203-222.2002
  111. 111. Shi H, Chen J, Lu M, Li W, Deng W, Kang P. CRISPR/Cas9-mediated OsFd1 editing enhances rice broad-spectrum resistance without growth and yield penalty. Plant Biotechnol J. 2025;23:489–91. https://doi.org/10.1111/pbi.14512
  112. 112. Sathee L, Jagadhesan B, Pandesha PH, Barman D, Adavi BS, Nagar S. Genome editing targets for improving nutrient use efficiency and nutrient stress adaptation. Front Genet. 2022;13:900897. https://doi.org/10.3389/fgene.2022.900897
  113. 113. Kumar D, Yadav A, Ahmad R, Dwivedi UN, Yadav K. CRISPR-based genome editing for nutrient enrichment in crops: a promising approach toward global food security. Front Genet. 2022;13:932859. https://doi.org/10.3389/fgene.2022.932859
  114. 114. Ceasar SA, Maharajan T, Hillary VE, Ajeesh Krishna TP. Insights to improve the plant nutrient transport by CRISPR/Cas system. Biotechnol Adv. 2022;59:107963. https://doi.org/10.1016/j.biotechadv.2022.107963
  115. 115. Mohamed HI, Khan A, Basit A. CRISPR-Cas9 system mediated genome editing technology: an ultimate tool to enhance abiotic stress in crop plants. J Soil Sci Plant Nutr. 2024;24:1799–822. https://doi.org/10.1007/s42729-024-01778-x
  116. 116. Fu Y, Mason AS, Song M. Multi-omics strategies uncover the molecular mechanisms of nitrogen, phosphorus and potassium deficiency responses in Brassica napus. Cell Mol Biol Lett. 2023;28:63. https://doi.org/10.1186/s11658-023-00479-0
  117. 117. Luzarowski M, Skirycz A. Emerging strategies for the identification of protein-metabolite interactions. J Exp Bot. 2019;70:4605–18. https://doi.org/10.1093/jxb/erz228
  118. 118. Heyneke E, Hoefgen R. Meeting the complexity of plant nutrient metabolism with multi-omics approaches. J Exp Bot. 2021;72(7):2261–5. https://doi.org/10.1093/jxb/eraa600
  119. 119. Singh A, Jaiswal A, Singh A, Tomar RS, Kumar A. Plant ionomics: toward high-throughput nutrient profiling. In: Plant nutrition and food security in the era of climate change. Academic Press; 2022. p. 227–54. https://doi.org/10.1016/B978-0-12-822916-3.00015-9
  120. 120. Lodovici A, Buoso S, Miras-Moreno B, Lucini L, Tomasi N, García-Pérez P. A multi-omics insight on the interplay between iron deficiency and nitrogen forms in tomato. Front Plant Sci. 2024;15:1408141. https://doi.org/10.3389/fpls.2024.1408141
  121. 121. Satismruti K, Senthil N, Vellaikumar S, Ranjani R, Raveendran M. Plant ionomics: a platform for identifying novel genes regulating plant mineral nutrition. Am J Plant Sci. 2013;4(7):1309–15. https://doi.org/10.4236/ajps.2013.47162
  122. 122. Bashir K, Nozoye T, Ishimaru Y, Nakanishi H, Nishizawa NK. Exploiting new tools for iron biofortification of rice. Biotechnol Adv. 2013;31(8):1624–33. https://doi.org/10.1016/j.biotechadv.2013.08.012
  123. 123. Avnee S, Sood S, Chaudhary DR, Jhorar P, Rana RS. Biofortification: an approach to eradicate micronutrient deficiency. Front Nutr. 2023;10:1233070. https://doi.org/10.3389/fnut.2023.1233070
  124. 124. Naik B, Kumar V, Rizwanuddin S, Mishra S, Kumar V, Saris PEJ. Biofortification as a solution for addressing nutrient deficiencies and malnutrition. Heliyon. 2024;10(9):e30595. https://doi.org/10.1016/j.heliyon.2024.e30595
  125. 125. Karthika KS, Rashmi I, Neenu S, Philip PS. Agronomic biofortification: an effective tool for alleviating nutrient deficiency in plants and human diet. In: Hasanuzzaman M, editor. Mineral biofortification in crop plants for ensuring food security. Singapore: Springer; 2023. p. 1–25. https://doi.org/10.1007/978-981-99-4090-5_1
  126. 126. Nemati M, Singh B, Mir RA, Nemati M, Babaei A, Ahmadi M. Plant-derived extracellular vesicles: a novel nanomedicine approach with advantages and challenges. Cell Commun Signal. 2022;20:69. https://doi.org/10.1186/s12964-022-00889-1
  127. 127. Di Giulio S, Carata E, Mariano S, Panzarini E. Plant extracellular vesicles: investigating their utilization as beneficial nutrients in diet. Appl Sci. 2023;13(11):6656. https://doi.org/10.3390/app13116656
  128. 128. Rutter BD, Innes RW. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiol. 2017;173(1):728–41. https://doi.org/10.1104/pp.16.01253
  129. 129. Li C, Zhu R, Chen Z, Du M, Liu Y, Liu C. Extracellular vesicles in Chlamydomonas reinhardtii: mediators of nutrient sensing and cell-to-cell communication. Algal Res. 2024;85:103853. https://doi.org/10.1016/j.algal.2024.103853
  130. 130. Liu G, Kang G, Wang S, Huang Y, Cai Q. Extracellular vesicles: emerging players in plant defense against pathogens. Front Plant Sci. 2021;12:757925. https://doi.org/10.3389/fpls.2021.757925

Downloads

Download data is not yet available.