Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

A comprehensive review on phytochemistry, folkloric uses and pharmacological including toxicity profiles of Codiaeum variegatum L.

DOI
https://doi.org/10.14719/pst.8484
Submitted
24 March 2025
Published
17-10-2025
Versions

Abstract

A plant's ability to affect human physiological functions is attributed to the presence of a chemical compound. These substances fall into two groups: main and secondary metabolites. Metabolic processes produce secondary metabolites that are crucial to a plant's defence mechanism, whereas primary metabolites are required for a plant's growth and development. Alkaloids, carbohydrates, glycosides, steroids, flavonoids, coumarins, fatty acids, terpenoids and phenols are examples of secondary metabolites. Codiaeum variegatum, also known as the miracle shrub, is a plant that belongs to the family Euphorbiaceae. It is usually utilized as an interior plant for decorative purposes due to its beautiful, colourful and large leaves. This review aims to provide a concise summary of the most important and recent information available about C. variegatum. This plant is highly valued for its content of important secondary metabolites with various therapeutic activities, including antioxidant, Antidiarrheal, Anticonvulsant, Antiinflammatory, Antipyretic, antiamoebic, antimicrobial, antiviral and anticancer properties. Flavonoids, phenolic acids, stilbenes, alkaloids, sterols and fatty acids were the major secondary metabolites identified and isolated from C. variegatum. This study was chosen because C. variegatum is a rich plant with various secondary metabolites, serving as a reference for researchers interested in this plant. This review article examines the phytochemical composition, Folkloric uses, pharmacological activities versus toxic potential of C. variegatum. It is made by evaluation of publishing on C. variegatum listed in the online databases Web of Science, Springer Link, PubMed, Science Direct, Scopus and Google Scholar was run between 1980 and 2024 and interesting researches was founded related to the traditional uses, phytochemicals, profile of toxicity and pharmacological activity of C. variegatum and the essential and valued sections were chosen to be reviewed. The results suggest that the Iraqi C. variegatum plant is a promising natural source that can be utilized in nutrition and medicine, because of its safety and efficacy profile. It provides a basis for researchers and opens the door to studying, testing, evaluating and developing compounds of great value for human health.

References

  1. 1. Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med. 2013;10:210–29. https://doi.org/10.4314/ajtcam.v10i5.2
  2. 2. Mbuni YM, Wang S, Mwangi BN, Mbari NJ, Musili PM, Walter NO, et al. Medicinal plants and their traditional uses in local communities around Cherangani Hills, Western Kenya. Plants. 2020;9(3):331. https://doi.org/10.3390/plants9030331
  3. 3. Kumar S, Korra T, Thakur R, Arutselvan R, Kashyap AS, Nehela Y, et al. Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress. 2023;8:100154. https://doi.org/10.1016/j.stress.2023.100154
  4. 4. Bijekar SR, Gayatri MC. Phytochemical profile of Codiaeum variegatum (L.) Bl. Int J Pharmacol Pharm Sci. 2014;2:22–31.
  5. 5. Duhoky M, Al-Mizory L. Micropropagation of croton (Codiaeum variegatum). Drying cycles in distilled water, CaCO3, MgSO4 and CaCO3 MgSO4 solutions on growth and yield. 2010:112.
  6. 6. Krishnamoorthy MN, Srikrishnah MS, Sutharsan S. Influence of different shade levels on the growth and quality of Codiaeum variegatum var. Bush is on fire in the Batticaloa District. Intl J Res Publ. 2020;6(1):21.
  7. 7. Njoya EM, Kamini MF, Abia WA, Pechangou SN, Njayou FN, Tchana AN, et al. Acute and subchronic toxicity evaluation of the aqueous extract of Codiaeum variegatum leaves on Wistar albino rodents of both sexes. J Complement Med Res. 2018 Mar 17;7:108–4. https://doi.org/10.5455/jcmr.20170412114130
  8. 8. Pyngrope N, Swamy VN, Akila E, Pruthvi N. An updated review on the therapeutic potential of Codiaeum species. RGUHS J Pharm Sci. 2022;12(2).:141–7 https://doi.org/10.26463/rjps.12_2_7
  9. 9. Nasib A, Ali K, Khan S. In vitro propagation of croton (Codiaeum variegatum). Pak J Bot. 2008;40(1):99–104.
  10. 10. Billo M, Cabalion P, Waikedre J, Fourneau C, Bouttier S, Hocquemiller R, et al. Screening of some new caledonian and vanuatu medicinal plants for antimycobacterial activity. J Ethnopharmacol. 2005;96:195–200. https://doi.org/10.1016/j.jep.2004.09.008
  11. 11. Saffoon N, Uddin R, Subhan N, Hossain H, Reza HM, Alam MA. In vitro antioxidant activity and HPLC-DAD system-based phenolic content analysis of Codiaeum variegatum found in Bangladesh. Adv Pharm Bull. 2014 Dec 31;4(Suppl 2):533. https://doi.org/10.5681/apb.2014.079
  12. 12. Bertelli A, Biagi M, Corsini M, Baini G, Cappellucci G, Miraldi E. Polyphenols: From theory to practice. Foods. 2021 Oct 27;10(11):2595. https://doi.org/10.3390/foods10112595
  13. 13. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81((1 Suppl):230S–42S. https://doi.org/10.1093/ajcn/81.1.230S
  14. 14. Yordi EG, Pérez EM, Matos MJ, Villares EU. Antioxidant and pro-oxidant effects of polyphenolic compounds and structure-activity relationship evidence. Nutrition, Well-Being and Health. 2012;2:23–48.
  15. 15. Šamec D, Karalija E, Šola I, Vujčić Bok V, Salopek-Sondi B. The role of polyphenols in abiotic stress response: the influence of molecular structure. Plants. 2021;10(1):118. https://doi.org/10.3390/plants10010118
  16. 16. Rasouli H, Farzaei MH, Khodarahmi R. Polyphenols and their benefits: a review. Int J Food Prop. 2017;20(suppl 2):1700–41. https://doi.org/10.1080/10942912.2017.1354017
  17. 17. Del Bo’ C, Bernardi S, Marino M, Porrini M, Tucci M, Guglielmetti S, et al. Systematic review on polyphenol intake and health outcomes: is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients. 2019;11(6):1355. https://doi.org/10.3390/nu11061355
  18. 18. Brglez Mojzer E, Knez Hrnčič M, Škerget M, Knez Ž, Bren U. Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules. 2016;21(7):901–39. https://doi.org/10.3390/molecules21070901
  19. 19. Samanta A, Das G, Das SK. Roles of flavonoids in plants. Ecol Environ Conserv. 2011;100(6):12–35.
  20. 20. He XG. Online identification of phytochemical constituents in botanical extracts by combined high-performance liquid chromatographic–diode array detection–mass spectrometric techniques. J Chromatogr A. 2000;880(1–2):203–32. https://doi.org/10.1016/S0021-9673(00)00059-5
  21. 21. Cuyckens F, Shahat AA, Van den Heuvel H, Abdel-Shafeek KA, El Messiry MM, Nasr MMS-E, et al. The application of liquid chromatography-electrospray ionization mass spectrometry and collision-induced dissociation in the structural characterization of acylated flavonol O-glycosides from the seeds of Carrichtera annua. Eur J Mass Spectrom. 2003;9(4):409–20. https://doi.org/10.1255/ejms.559
  22. 22. Symonowicz M, Kolanek M. Flavonoids and their properties to form chelate complexes. Bromatol Chem Toksykol. 2012;45(1):35–41.https://doi.org/10.34658/bfs.2012.76.1.35-41
  23. 23. Janićijević J, Tošić S, Mitrović T. Flavonoids in plants. In: Proceedings of the 9th Symposium on Flora of Southeastern Serbia and Neighbouring Regions. 2007 Sep; Niš, Serbia. Niš: University of Niš; 2007. p. 153–6.
  24. 24. Wang TY, Li Q, Bi KS. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci. 2018;13(1):12–23. https://doi.org/10.1016/j.ajps.2017.08.004
  25. 25. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. https://doi.org/10.1017/jns.2016.41
  26. 26. Robbins RJ. Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem. 2003;51(10):2866–87. https://doi.org/10.1021/jf026182t
  27. 27. Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep. 2019;24:e00370. https://doi.org/10.1016/j.btre.2019.e00370
  28. 28. Bistgani ZE, Hashemi M, Dacosta M, Craker L, Maggi F, Morshedloo MR. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind Crop Prod. 2019;135:311–20. https://doi.org/10.1016/j.indcrop.2019.04.055
  29. 29. Chen Z, Ma Y, Yang R, Gu Z, Wang P. Effects of exogenous Ca2+ on phenolic accumulation and physiological changes in germinated wheat (Triticum aestivum L.) under UV-B radiation. Food Chem. 2019;288:368–76. https://doi.org/10.1016/j.foodchem.2019.02.131
  30. 30. Bribi N. Pharmacological activity of alkaloids: a review. Asian J Bot. 2018;1(1):1–6. https://doi.org/10.63019/ajb.v1i2.467
  31. 31. Valletta A, Iozia LM, Leonelli F. Impact of environmental factors on stilbene biosynthesis. Plants. 2021;10(1):90. https://doi.org/10.3390/plants10010090
  32. 32. Morabito G, Miglio C, Peluso I, Serafini M. Fruit polyphenols and postprandial inflammatory stress. In: Watson RR, Preedy VR, Zibadi S, editors. Polyphenols in human health and disease. Elsevier; 2014. p. 1107–26. https://doi.org/10.1016/B978-0-12-398456-2.00085-2
  33. 33. Chong J, Poutaraud A, Hugueney P. Metabolism and roles of stilbenes in plants. Plant Sci. 2009;177:143–55. https://doi.org/10.1016/j.plantsci.2009.05.012
  34. 34. Jeandet P, Delaunois B, Conreux A, Donnez D, Nuzzo V, Cordelier S, et al. Biosynthesis, metabolism, molecular engineering and biological functions of stilbene phytoalexins in plants. Biofactors. 2010;36:331–41. https://doi.org/10.1002/biof.108
  35. 35. Labu ZK, Laboni FR, Al Mamun MM, Howlader MS. Antidiarrhoeal activity and total tannin content of ethanolic leaf extract of Codiaeum variegatum. Dhaka Univ J Pharm Sci. 2015 Jun 18;14(1):87–90. https://doi.org/10.3329/dujps.v14i1.23740
  36. 36. Srikrishna D, Godugu C, Dubey PK. A review of the pharmacological properties of coumarins. Mini Rev Med Chem. 2018 Feb 1;18(2):113–41. https://doi.org/10.2174/1389557516666160801094919
  37. 37. Rashwan RT, Moustafa AM, Taie HA, Marzouk M. Codiaeum variegatum Zanzibar (Pictum spot): LC-MS/MS Phytochemical profile and in vitro antioxidant and antitumor activities. Egypt J Chem. 2024;67(9):339–57. https://doi.org/10.21608/ejchem.2024.259570.9125
  38. 38. Miras-Moreno B, Sabater-Jara AB, Pedreño MA, Almagro L. Bioactivity of phytosterols and their production in plant in vitro cultures. J Agric Food Chem. 2016;64(38):7049–58. https://doi.org/10.1021/acs.jafc.6b02345
  39. 39. Fernandes P, Cabral JM. Phytosterols: applications and recovery methods. Bioresour Technol. 2007;98(12):2335–50. https://doi.org/10.1016/j.biortech.2006.10.006
  40. 40. Ferrer A, Altabella T, Arró M, Boronat A. Emerging roles for conjugated sterols in plants. Prog Lipid Res. 2017 Jul 1;67:27–37. https://doi.org/10.1016/j.plipres.2017.06.002
  41. 41. Nattagh‐Eshtivani E, Barghchi H, Pahlavani N, Barati M, Amiri Y, Fadel A, et al. Biological and pharmacological effects and nutritional impact of phytosterols: a comprehensive review. Phytother Res. 2022;36(1):299–322. https://doi.org/10.1002/ptr.7312
  42. 42. Scrimgeour CM, Harwood JL. Fatty acid and lipid structure. In: Gunstone FD, Harwood JL, Dijkstra AJ, editors.The lipid handbook with CD-ROM. 3rd ed. Boca Raton(FL): CRC Press; 2007. p. 15–50. https://doi.org/10.1201/9781420009675-5
  43. 43. De Carvalho CC, Caramujo MJ. The various roles of fatty acids. Molecules. 2018;23(10):2583. https://doi.org/10.3390/molecules23102583
  44. 44. Tolba SS, Mohammed HS, Ghareeb M, Mohamed AE. Antidiabetic activity and GC-MS analysis of n-Hexane leaf Extract of Codiaeum variegatum (Euphorbiaceae). Azhar Int J Pharm Med Sci 2025;5(1):128–40 https://doi.org/10.21608/aijpms.2024.264259.1250
  45. 45. Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med. 2013;10:210–29. https://doi.org/10.4314/ajtcam.v10i5.2
  46. 46. Njoya EM, Fewou PM, Niedermeyer TH. Codiaeum variegatum (L.) Rumph. ex A. Juss. (Euphorbiaceae): an overview of its botanical diversity, traditional uses, phytochemistry, pharmacological effects and perspectives towards developing its plant-based products. J Ethnopharmacol. 2021;277:114244. https://doi.org/10.1016/j.jep.2021.114244
  47. 47. Labu ZK, Laboni FR, Al Mamun MM, Howlader MS. Antidiarrhoeal activity and total tannin content of ethanolic leaf extract of Codiaeum variegatum. Dhaka Univ J Pharm Sci. 2015;14:87–90. https://doi.org/10.3329/dujps.v14i1.23740
  48. 48. Shah S, Bhat JA. Ethnomedicinal knowledge of indigenous communities and pharmaceutical potential of rainforest ecosystems in the Fiji Islands. J Integr Med. 2019;17:244–9. https://doi.org/10.1016/j.joim.2019.04.006
  49. 49. Smith JP Jr. Poisonous plants of home and garden [Internet]. Arcata (CA): Humboldt State University; 2022 [cited 2025 Jul 26]. (Botanical Studies; no. 104). Available from: https://digitalcommons.humboldt.edu/botany_jps/104
  50. 50. Rahmatullah M, Ferdausi D, Mollik MA, Azam MN, Rahman MT, Jahan R. Ethnomedicinal survey of Bheramara area in Kushtia district, Bangladesh. Am Eurasian J Sustain Agric. 2009;3(3):534–41.
  51. 51. Larbie C, Abboah-Offei O. Anticancer properties of some ornamental plants on KNUST campus, Kumasi, Ghana. Int J Phytopharm. 2014;5(5):366–70.
  52. 52. Pandey S, Singh S. Exploring phytoconstituents and pharmacological profile of Codiaeum variegatum (L.), Garden croton. Pharmacol Res Modern Chinese Med. 2023;9:100327. https://doi.org/10.1016/j.prmcm.2023.100327
  53. 53. Mfotie NE, Weber C, Hernandez-Cuevas NA, Hon CC, Janin Y, Kamini MFG, et al. Bioassay-guided fractionation of extracts from Codiaeum variegatum against Entamoeba histolytica discovers compounds that modify the expression of ceramide biosynthesis-related genes. PLoS Negl Trop Dis. 2014;8(1):e2607. https://doi.org/10.1371/journal.pntd.0002607
  54. 54. Moundipa FP, Kamini MFG, Bilong Bilong CF, Bruchhaus I. In vitro amoebicidal activity of some medicinal plants of the Bamun region (Cameroon). Afr J Tradit Complement Altern Med. 2005;2(2):113–21. https://doi.org/10.4314/ajtcam.v2i2.31109
  55. 55. Saffoon N, Alam Ashraful M, Uddin GM. Phytochemical and cytotoxicity investigation of Codiaeum variegatum Linn. Leaf. Stamford J Pharm Sci. 2010;3(2):51–3. https://doi.org/10.1016/j.jep.2021.114244
  56. 56. Njoya EM, Fewou PM, Niedermeyer TH. Codiaeum variegatum (L.) Rumph. ex A. Juss. (Euphorbiaceae): An overview of its botanical diversity, traditional uses, phytochemistry, pharmacological effects and perspectives towards developing its plant-based products. J Ethnopharmacol. 2021;277:114244. https://doi.org/10.1016/j.jep.2021.114244
  57. 57. Labu ZK, Laboni FR, Al Mamun MM, Howlader MS. Antidiarrhoeal activity and total tannin content of ethanolic leaf extract of Codiaeum variegatum. Dhaka Univ J Pharm Sci. 2015;14(1):87-90. https://doi.org/10.3329/dujps.v14i1.23740
  58. 58. Mohamed NE, El-Masry RA, Awad AE, Badr HA. Chemical composition and antibacterial activity of Codiaeum variegatum leaves. Zagazig J Agric Res. 2019;46:1133–40. https://doi.org/10.21608/zjar.2019.47093
  59. 59. Nsangou SP, Mandou CN, Fondjou CM, Ngohoba VS, Enang II EB, Njingou I, et al. Codiaeum variegatum hydro alcoholic leaf extracts and their fractions inhibit proinflammatory mediators in vitro. J Biosci Med. 2023;11:40–54. https://doi.org/10.4236/jbm.2023.115004
  60. 60. Lagashetty A, Anusha M, Channabasavaraja M, Veena V, Ganiger SK. Exploring potential biological applications of green-derived silver nanoparticles using Codiaeum variegatum leaf extract. Next Research. 2025;2(1):100103. https://doi.org/10.1016/j.nexres.2024.100103
  61. 61. Dinakaran VS, Vontoor N, Hussain TS, Reji S. A Systematic Review on Ethnobotanical and Pharmacological Aspects of Croton plant Codiaeum variegatum (L.). Asian J Res Chem. 2024;17(3):159–68. https://doi.org/10.52711/0974-4150.2024.00030
  62. 62. Mfotie Njoya E, Weber C, Hernandez-Cuevas NA, Hon CC, Janin Y, Kamini MF, et al. Bioassay-guided fractionation of extracts from Codiaeum variegatum against Entamoeba histolytica discovers compounds that modify the expression of ceramide biosynthesis-related genes. PLoS Negl Trop Dis. 2014 Jan 9;8(1):e2607. https://doi.org/10.1371/journal.pntd.0002607
  63. 63. Njoya EM, Kamini MF, Abia WA, Pechangou SN, Njayou FN, Tchana AN, et al. Acute and subchronic toxicity evaluation of the aqueous extract of Codiaeum variegatum leaves on Wistar albino rodents of both sexes. J Complement Med Res. 2018 Mar 17;7:108–4. https://doi.org/10.5455/jcmr.20170412114130
  64. 64. Njoya EM, Moundipa PF, Stopper H. In vitro genotoxic and mutagenic evaluation of the aqueous extract of Codiaeum variegatum and its amoebicidal sub-fraction. J Ethnopharmacol. 2014 Aug 8;155(1):823–9. https://doi.org/10.1016/j.jep.2014.06.038
  65. 65. NAIDU GP. Antifungal activity in Codiaeum variegatum leaf extract. Current Science. 1988 May 5;57(9):502-4.

Downloads

Download data is not yet available.