Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Application of fulvic acid in agriculture: An overview

DOI
https://doi.org/10.14719/pst.8487
Submitted
24 March 2025
Published
28-05-2025
Versions

Abstract

Fulvic acids, an essential fraction of soil organic matter, have emerged as influential agents in enhancing soil fertility and boosting crop productivity. This review compiles and analyzes recent scientific literature to clarify the diverse roles fulvic acids play within soil ecosystems and their subsequent effects on plant growth and agricultural yield. The methodology involved a comprehensive review of 150 relevant articles, including 100 peer-reviewed studies from databases such as Web of Science, ResearchGate, PubMed and Google Scholar. Initially, the interactions between fulvic acids and various soil components are discussed, demonstrating their ability to improve soil structure, increase nutrient retention and enhance nutrient availability across a range of soil types. The review further evaluates the outcomes of fulvic acid application on crop growth in different agricultural systems under varying environmental conditions. In addition, the potential of fulvic acids to act synergistically with other soil amendments and fertilizers is explored, offering insights into integrated strategies for sustainable agricultural management. Collectively, the findings highlight fulvic acids as multifunctional agents that improve soil quality and contribute to increased crop resilience and sustainability in modern farming systems.

References

  1. 1. Maqsood MF, Shahbaz M, Khalid F, Rasheed Y, Asif K, Naz N, et al. Biogenic nanoparticles application in agriculture for ROS mitigation and abiotic stress tolerance: A review. Plant Stress. 2023;10:100281. https://doi.org/10.1016/j.stress.2023.100281
  2. 2. Manzoor S, Habib-ur-Rahman M, Haider G, Ghafoor I, Ahmad S, Afzal M, et al. Biochar and slow-releasing nitrogen fertilizers improved growth, nitrogen use, yieldand fiber quality of cotton under arid climatic conditions. Environ Sci Pollut Res. 2022:1-14. https://doi.org/10.1007/s11356-021-16576-6
  3. 3. Hayat U, din Ku, Haider A, Ramzan T, Shahzad BA, Ahmad M, et al. Salicylic acid-induced antioxidant defense system alleviates cadmium toxicity in wheat. J Soil Sci Plant Nut. 2024;24(2):3068-86. https://doi.org/10.1007/s42729-024-01732-x
  4. 4. Ali Q, Zia MA, Kamran M, Shabaan M, Zulfiqar U, Ahmad M, et al. Nanoremediation for heavy metal contamination: A review. Hybrid Advances. 2023;4:100091. https://doi.org/10.1016/j.hybadv.2023.100091
  5. 5. Zulfiqar U, Ayub A, Hussain S, Ahmad M, Rehman A, Ishfaq M, et al. Iron biofortification in cereal crops: Recent progress and prospects. Food Energy Secur. 2024;13(4):e547. https://doi.org/10.1002/fes3.547
  6. 6. Katsenios N, Sparangis P, Vitsa S, Leonidakis D, Efthimiadou A. Application of biostimulants and herbicides as a promising co-implementation: the incorporation of a new cultivation practice. Agronomy. 2023;13(10):2634. https://doi.org/10.3390/agronomy13102634
  7. 7. Khalid F, Rasheed Y, Asif K, Ashraf H, Maqsood MF, Shahbaz M, et al. Plant biostimulants: Mechanisms and applications for enhancing plant resilience to abiotic stresses. J Soil Sci Plant Nut. 2024;24(4):6641-90. https://doi.org/10.1007/s42729-024-01996-3
  8. 8. Halpern M, Bar-Tal A, Ofek M, Minz D, Muller T, Yermiyahu U. The use of biostimulants for enhancing nutrient uptake. Adv Agron. 2015;130:141-74. https://doi.org/10.1016/bs.agron.2014.10.001
  9. 9. Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR. A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Adv Agron. 2014;124:37-89. https://doi.org/10.1016/B978-0-12-800138-7.00002-4
  10. 10. Abd-Elzaher M, Ibrahim I, Khalil F, Mohamed W. Chemical composition and productivity for corn as affected by inorganic, organic nitrogen fertilizers and activators (Humic and Fulvic acid). Curr Chem Lett. 2022;11(2):207-18.
  11. 11. Li F, Zhang S, Chai L, Guo Z, Li P, Han Y, et al. Enhanced maize yield and nitrogen efficiency with low molecular weight fulvic acid: insights into chlorophyll a/b ratio and nitrogen metabolising enzyme activity. Plant Soil Environ. 2024;70(10). https://doi.org/10.17221/320/2024
  12. 12. Wu J, Wu M, Li C, Yu G. Long-term fertilization modifies the structures of soil fulvic acids and their binding capability with Al. PLoS One. 2014;9(8):e105567. https://doi.org/10.1371/journal.pone.0105567
  13. 13. Wu J, West L, Stewart D. Effect of humic substances on Cu (II) solubility in kaolin-sand soil. J Hazard Mater. 2002;94(3):223-38. https://doi.org/10.1016/S0304-3894(02)00082-1
  14. 14. Tinti A, Tugnoli V, Bonora S, Francioso O. Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review. J Cent Eur Agric. 2015;16(1). https://doi.org/10.5513/JCEA01/16.1.1535
  15. 15. Song F, Wu F, Feng W, Tang Z, Giesy JP, Guo F, et al. Fluorescence regional integration and differential fluorescence spectroscopy for analysis of structural characteristics and proton binding properties of fulvic acid sub-fractions. J Environ Sci. 2018;74:116-25. https://doi.org/10.1016/j.jes.2018.02.015
  16. 16. Bertoli AC, Garcia JS, Trevisan MG, Ramalho TC, Freitas MP. Interactions fulvate-metal (Zn 2+, Cu 2+ and Fe 2+): Theoretical investigation of thermodynamic, structural and spectroscopic properties. Biometals. 2016;29:275-85. https://doi.org/10.1007/s10534-016-9914-8
  17. 17. Boguta P, Sokołowska Z. Zinc binding to fulvic acids: Assessing the impact of pH, metal concentrations and chemical properties of fulvic acids on the mechanism and stability of formed soluble complexes. Molecules. 2020;25(6):1297. https://doi.org/10.3390/molecules25061297
  18. 18. Bondareva L, Fedorova N. The effect of humic substances on metal migration at the border of sediment and water flow. Environ Res. 2020;190:109985. https://doi.org/10.1016/j.envres.2020.109985
  19. 19. Chi M, Wang Z, Xu W, Hou R. Extraction and characterization of fulvic acid from corn straw compost by alkali solution acid precipitation. Ind Crops Prod. 2023;198:116678. https://doi.org/10.1016/j.indcrop.2023.116678
  20. 20. Li N, Ma H, Wang G, Ma X, Deng J, Yuan S. Efficient extraction and formation mechanism of fulvic acid from lignite: Experimental and DFT studies. J Environ Manag. 2024;365:121650. https://doi.org/10.1016/j.jenvman.2024.121650
  21. 21. Zhang Y, Gong G, Zheng H, Yuan X, Xu L. Synergistic extraction and characterization of fulvic acid by microwave and hydrogen peroxide–glacial acetic acid to oxidize low-rank lignite. ACS omega. 2020;5(12):6389-94. https://doi.org/10.1021/acsomega.9b03796
  22. 22. Phong NT, Yoon HY, Kang MS, Kwon M, Lee Y, Baik JM, et al. Ionic liquid-based extraction of fulvic-like substances from wood sawdust: reproducing unique biological activities of fulvic acids using renewable natural sources. J Agric Food Chem. 2024;72(38):20981-90. https://doi.org/10.1021/acs.jafc.4c04364
  23. 23. Mghaiouini R, Benzibiria N, Monkade M, Bouari AE. Formulation of new biostimulant of plant and soil correction based on humic acids extracted by magnetized water from compost from the waste of coffee marc and cattle manure. Waste Biomass Valori. 2022;13(1):453-65. https://doi.org/10.1007/s12649-021-01535-6
  24. 24. Dimawarnita F, Maharani KY, Faramitha Y, Kalbuadi DN, Prakoso HT, Sari IP, et al. Optimization of fulvic acids production from oil palm empty fruit bunches using microwave extractor. Menara Perkebunan. 2024;92(2):141-52. https://doi.org/10.22302/iribb.jur.mp.v92i2.582
  25. 25. Saruhan V, Kusvuran A, Babat S. The effect of different humic acid fertilization on yield and yield components performances of common millet (Panicum miliaceum L.). Sci Res Essays. 2011;6(3):663-9.
  26. 26. Kumar Sootahar M, Zeng X, Su S, Wang Y, Bai L, Zhang Y, et al. The effect of fulvic acids derived from different materials on changing properties of albic black soil in the Northeast Plain of China. Molecules. 2019;24(8):1535. https://doi.org/10.3390/molecules24081535
  27. 27. Moody P, Aitken R. Soil acidification under some tropical agricultural systems. 1. Rates of acidification and contributing factors. Soil Res. 1997;35(1):163-74. https://doi.org/10.1071/S96069
  28. 28. Tahir M, Khurshid M, Khan M, Abbasi M, Kazmi M. Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere. 2011;21(1):124-31. https://doi.org/10.1016/S1002-0160(10)60087-2
  29. 29. Kumar Sootahar M, Zeng X, Wang Y, Su S, Soothar P, Bai L, et al. The short-term effects of mineral-and plant-derived fulvic acids on some selected soil properties: improvement in the growth, yieldand mineral nutritional status of wheat (Triticum aestivum L.) under soils of contrasting textures. Plants. 2020;9(2):205. https://doi.org/10.3390/plants9020205
  30. 30. Klučáková M. Size and charge evaluation of standard humic and fulvic acids as crucial factors to determine their environmental behavior and impact. Front Chem. 2018;6:235. https://doi.org/10.3389/fchem.2018.00235
  31. 31. Chen L, Zhang W, Zhang R, Lin K, He L, Wu L. The bioavailability and adverse impacts of lead and decabromodiphenyl ether on soil microbial activities. Environ Sci Pollut Res. 2015;22:12141-9. https://doi.org/10.1007/s11356-015-4474-y
  32. 32. Wu M, Song M, Liu M, Jiang C, Li Z. Fungicidal activities of soil humic/fulvic acids as related to their chemical structures in greenhouse vegetable fields with cultivation chronosequence. Sci Repo. 2016;6(1):32858. https://doi.org/10.1038/srep32858
  33. 33. Rodríguez NC, Urrutia EC, Gertrudis BH, Chaverri JP, Mejía GB. Antioxidant activity of fulvic acid: A living matter-derived bioactive compound. J Food Agri Environ. 2011;9(3):123-7.
  34. 34. Li Z, Zhang K, Qiu L, Ding S, Wang H, Liu Z, et al. Soil microbial co-occurrence patterns under controlled-release urea and fulvic acid applications. Microorganisms. 2022;10(9):1823. https://doi.org/10.3390/microorganisms10091823
  35. 35. Bezuglova O, Klimenko A. Application of humic substances in agricultural industry. Agronomy. 2022;12(3):584. https://doi.org/10.3390/agronomy12030584
  36. 36. Xue S, Yi X, Peng J, Bak F, Zhang L, Duan G, et al. Fulvic acid enhances nitrogen fixation and retention in paddy soils through microbial-coupled carbon and nitrogen cycling. Environ Sci Technol. 2024;58(42):18777-87. https://doi.org/10.1021/acs.est.4c07616
  37. 37. Qiu X, Wang W, Yang J, Li D, Jiao J, Wang E, et al. Fulvic acid promotes legume–rhizobium symbiosis by stimulating endogenous flavonoids synthesis and secretion. JAgric Food Chem. 2024;72(12):6133-42. https://doi.org/10.1021/acs.jafc.3c08837
  38. 38. Gao Y, Song X, Liu K, Li T, Zheng W, Wang Y, et al. Mixture of controlled-release and conventional urea fertilizer application changed soil aggregate stability, humic acid molecular compositionand maize nitrogen uptake. Sci Total Environ. 2021;789:147778. https://doi.org/10.1016/j.scitotenv.2021.147778
  39. 39. Han P, Wu D, Sun D, Zhao M, Wang M, Wen T, et al. N2O and NOy production by the comammox bacterium Nitrospira inopinata in comparison with canonical ammonia oxidizers. Water Res. 2021;190:116728. https://doi.org/10.1016/j.watres.2020.116728
  40. 40. Liu X, Yang J, Tao J, Yao R. Integrated application of inorganic fertilizer with fulvic acid for improving soil nutrient supply and nutrient use efficiency of winter wheat in a salt-affected soil. Appl Soil Ecol. 2022;170:104255. https://doi.org/10.1016/j.apsoil.2021.104255
  41. 41. Li Z, Liu Z, Zhang M, Chen Q, Zheng L, Li YC, et al. The combined application of controlled-release urea and fulvic acid improved the soil nutrient supply and maize yield. Archives Agro Soil Sci. 2021;67(5):633-46. https://doi.org/10.1080/03650340.2020.1742326
  42. 42. Shen Y, Lin H, Gao W, Li M. The effects of humic acid urea and polyaspartic acid urea on reducing nitrogen loss compared with urea. J Sci Food Agric. 2020;100(12):4425-32. https://doi.org/10.1002/jsfa.10482
  43. 43. Gao F, Li Z, Du Y, Duan J, Zhang T, Wei Z, et al. The combined application of urea and fulvic acid solution improved maize carbon and nitrogen metabolism. Agronomy. 2022;12(6):1400. https://doi.org/10.3390/agronomy12061400
  44. 44. Priya B, Mahavishnan K, Gurumurthy D, Bindumadhava H, Upadhyay AP, Sharma NK. Fulvic acid (FA) for enhanced nutrient uptake and growth: insights from biochemical and genomic studies. J Crop Improv. 2014;28(6):740-57. https://doi.org/10.1080/15427528.2014.923084
  45. 45. Denre M, Ghanti S, Sarkar K. Effect of humic acid application on accumulation of mineral nutrition and pungency in garlic (Allium sativum L.). I J Biotechnol Mol Biol Res. 2014;5(2):7-12. https://doi.org/10.5897/IJBMBR2014.0186
  46. 46. Calvo P, Nelson L, Kloepper JW. Agricultural uses of plant biostimulants. Plant and soil. 2014;383:3-41. https://doi.org/10.1007/s11104-014-2131-8
  47. 47. Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, Mazzei P, et al. Humic and fulvic acids as biostimulants in horticulture. Scientia horticulturae. 2015;196:15-27. https://doi.org/10.1016/j.scienta.2015.09.013
  48. 48. Zhang P, Zhang H, Wu G, Chen X, Gruda N, Li X, et al. Dose-dependent application of straw-derived fulvic acid on yield and quality of tomato plants grown in a greenhouse. Front Plant Sci. 2021;12:736613. https://doi.org/10.3389/fpls.2021.736613
  49. 49. Liu X, Yang J, Tao J, Yao R, Wang X, Xie W, et al. Elucidating the effect and interaction mechanism of fulvic acid and nitrogen fertilizer application on phosphorus availability in a salt-affected soil. J Soils Sediments. 2021;21:2525-39. https://doi.org/10.1007/s11368-021-02941-y
  50. 50. Zhao X, Zhu D, Tan J, Wang R, Qi G. Cooperative action of fulvic acid and Bacillus paralicheniformis ferment in regulating soil microbiota and improving soil fertility and plant resistance to bacterial wilt disease. Microbiology spectrum. 2023;11(2):e04079-22. https://doi.org/10.1128/spectrum.04079-22
  51. 51. Al-Barakat HNK, ALshujairy QAT, Al-Hedny S. Effect of bio-fertilization and the addition of humic and fulvic acid in availability of phosphorus, some minor elements in soil and growth of white maize plant, Sorghum bicolor L. Plant archieves. 2018;18(2):2777-785
  52. 52. Jiao Y, Chen Q, Guo X, Li H, Chen X, Men K, et al. Effect of potassium fulvate on continuous tobacco cropping soils and crop growth. Front Plant Sci. 2024;15:1457793. https://doi.org/10.3389/fpls.2024.1457793
  53. 53. Awad A, Ahmed HMH. Influence of humic substances on cucumber seeds storability and root rot diseases incidence under salinity conditions. Int J Plant Soil Sci. 2020;32(1):51-73. https://doi.org/10.9734/ijpss/2020/v32i130235
  54. 54. Olivares FL, Aguiar NO, Rosa RCC, Canellas LP. Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Scientia Horticulturae. 2015;183:100-8. https://doi.org/10.1016/j.scienta.2014.11.012
  55. 55. Canellas LP, Olivares FL. Physiological responses to humic substances as plant growth promoter. Chem Biol Technol Agric. 2014;1:1-11. https://doi.org/10.1186/2196-5641-1-3
  56. 56. Braziene Z, Paltanavicius V, Avizienytė D. The influence of fulvic acid on spring cereals and sugar beets seed germination and plant productivity. Environ Res. 2021;195:110824. https://doi.org/10.1016/j.envres.2021.110824
  57. 57. Qin Y, Zhu H, Zhang M, Zhang H, Xiang C, Li B. GC-MS analysis of membrane-graded fulvic acid and its activity on promoting wheat seed germination. Molecules. 2016;21(10):1363. https://doi.org/10.3390/molecules21101363
  58. 58. Mahdy RM, Al-Saif AM, Ahmed ME, El-Bary TSA, Sharma A, El-Sheshtawy A-NA, et al. Evaluation of two different methods of fulvic acid application (Seed priming and foliar spray) on growth, yield and nutritional quality of Pea (Pisum sativum L.). Plants. 2024;13(23):3380. https://doi.org/10.3390/plants13233380
  59. 59. Abdel-Baky Y, Abouziena H, Amin A, Rashad El-Sh M, Abd El-Sttar A. Improve quality and productivity of some faba bean cultivars with foliar application of fulvic acid. Bull Natl Res Cent. 2019;43:1-11. https://doi.org/10.1186/s42269-018-0040-3
  60. 60. Schiavon M, Pizzeghello D, Muscolo A, Vaccaro S, Francioso O, Nardi S. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J Chem Ecol. 2010;36:662-9. https://doi.org/10.1007/s10886-010-9790-6
  61. 61. Faluku M, Al-Azawi TNI, Methela NJ, Khan M, Huy VN, Brown A, et al. Fulvic acid-releasing chitosan nanoparticles promote the growth and drought stress tolerance of rice plants. J Crop Health. 2024;76(3):739-51. https://doi.org/10.1007/s10343-024-00979-9
  62. 62. Brown A, Al‐Azawi TNI, Methela NJ, Rolly NK, Khan M, Faluku M, et al. Chitosan‐fulvic acid nanoparticles enhance drought tolerance in maize via antioxidant defense and transcriptional reprogramming. Physiologia Plantarum. 2024;176(4):e14455. https://doi.org/10.1111/ppl.14455
  63. 63. Hussien MA, Abdelall EA, Elsyed EA. Effect of NAA and fulvic acid spray on vegetative growth, productivity and fruit quality of “Taimour” mango cultivar. Alexandria Science Exchange Journal. 2023;44(3):265-75. https://doi.org/10.21608/asejaiqjsae.2023.308356
  64. 64. Assi NN, Zahwan TA, editors. Response of pomegranate trees to herd manure addition and spraying with fulvic acid and brassinolide. IOP Conference Series: Earth and Environmental Science; 2023: IOP Publishing.
  65. 65. Al-Zubaidi NAJ, Awaid BMR. Effect of foliar nutrition with humic, fulvic acid and proline and their interaction between them on the vegetative growth characteristics of sunflower Helianthus annuus L. J Glob Innov Agric Sci. 2023;11(3):477-53. https://doi.org/10.22194/JGIAS/11.1098
  66. 66. Nargesi MM, Sedaghathoor S, Hashemabadi D. Effect of foliar application of amino acid, humic acid and fulvic acid on the oil content and quality of olive. Saudi J Biol Sci. 2022;29(5):3473-81. https://doi.org/10.1016/j.sjbs.2022.02.034
  67. 67. Hareem M, Danish S, Obaid SA, Ansari MJ, Datta R. Mitigation of drought stress in chili plants (Capsicum annuum L.) using mango fruit waste biochar, fulvic acid and cobalt. Sci Repo. 2024;14(1):14270. https://doi.org/10.1038/s41598-024-65082-5
  68. 68. Lu Q, Xu Z, Zhang Q, Zhang Z, Zhang Y, Zhang T, et al. Foliar application of Fe-fulvic acid: A strategy to reduce heavy metal accumulation and enhance nutritional quality. Food Chem: X. 2024;24:101904. https://doi.org/10.1016/j.fochx.2024.101904
  69. 69. Keskin B, Akhoundnejad Y, Dasgan HY, Gruda NS. Fulvic acid, amino acids and vermicompost enhanced yield and improved nutrient profile of soilless iceberg lettuce. Plants. 2025;14(4):609. https://doi.org/10.3390/plants14040609
  70. 70. Farruggia D, Di Miceli G, Licata M, Urso G, Leto C, Novak J. Seaweed extract and fulvic acid application affect the biomass performance, the essential oil yield and composition of Sicilian oregano grown in an organic agricultural system. Ind Crops Prod. 2024;222:119790. https://doi.org/10.1016/j.indcrop.2024.119790
  71. 71. Dobbss L, Medici L, Peres LEP, Pino‐Nunes L, Rumjanek V, Façanha A, et al. Changes in root development of Arabidopsis promoted by organic matter from oxisols. Ann Appl Biol. 2007;151(2):199-211. https://doi.org/10.1111/j.1744-7348.2007.00166.x
  72. 72. Bento LR, Melo CA, Ferreira OP, Moreira AB, Mounier S, Piccolo A, et al. Humic extracts of hydrochar and Amazonian dark earth: molecular characteristics and effects on maize seed germination. Sci Total Environ. 2020;708:135000. https://doi.org/10.1016/j.scitotenv.2019.135000
  73. 73. Mora V, Bacaicoa E, Zamarreno A-M, Aguirre E, Garnica M, Fuentes M, et al. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J plant Physiol. 2010;167(8):633-42. https://doi.org/10.1016/j.jplph.2009.11.018
  74. 74. Nardi S, Pizzeghello D, Schiavon M, Ertani A. Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola. 2016;73(1):18-23. https://doi.org/10.1590/0103-9016-2015-0006
  75. 75. Ahmad T, Khan R, Nawaz Khattak T. Effect of humic acid and fulvic acid based liquid and foliar fertilizers on the yield of wheat crop. J Plant Nut. 2018;41(19):2438-45. https://doi.org/10.1080/01904167.2018.1527932
  76. 76. Li Z, Chen Q, Gao F, Meng Q, Li M, Zhang Y, et al. Controlled‐release urea combined with fulvic acid enhanced carbon/nitrogen metabolic processes and maize growth. J Sci Food Agric. 2022;102(9):3644-54. https://doi.org/10.1002/jsfa.11711
  77. 77. Ding S, Deng X, Yun W, Zhang P, He Z, Luo B. Effects of fulvic acid on rice growth and phosphorus absorption. J Plant Nut. 2024;47(9):1408-17. https://doi.org/10.1080/01904167.2024.2308189
  78. 78. Guo Y, Liu H, Gong P, Li P, Tian R, Zhang Y, et al. Preliminary studies on how to reduce the effects of salinity. Agronomy. 2022;12(12):3006. https://doi.org/10.3390/agronomy12123006
  79. 79. Jiang W, Chen R, Lyu J, Qin L, Wang G, Chen X, et al. Remediation of the microecological environment of heavy metal-contaminated soil with fulvic acid, improves the quality and yield of apple. J Hazard Mater. 2023;460:132399. https://doi.org/10.1016/j.jhazmat.2023.132399
  80. 80. Al-Eezzi Y, Al-Alawy H. Effect of fulvic acid and seaweed on the growth and yield of broccoli. J Pharm Negat Results. 2022;13(S01):583-87. https://doi.org/10.47750/pnr.2022.13.S01.71
  81. 81. Rohit T, Anita J, Sarang SH. Sustainable nutrient management: Exploring fulvic acid, chelated zinc application methods and rates for improved Maize growth and productivity. Plant Sci Today. 2025:1-8. https://doi.org/10.14719/pst.5708
  82. 82. Stefka S, Dobreva, Angelina M, Bogdan B. Effect of foliar fertilizers based on micro- and macronutrients and humic and fulvic acid on grain yield and the structural elements of the yield of Bulgarian Triticale varieties spraying in tillering and stem elongation phase. JMt Agric Balk. 2024;27(4):96-111.
  83. 83. He X, Zhang H, Li J, Yang F, Dai W, Xiang C, et al. The positive effects of humic/fulvic acid fertilizers on the quality of lemon fruits. Agronomy. 2022;12(8):1919. https://doi.org/10.3390/agronomy12081919
  84. 84. Alsudays IM, Alshammary FH, Alabdallah NM, Alatawi A, Alotaibi MM, Alwutayd KM, et al. Applications of humic and fulvic acid under saline soil conditions to improve growth and yield in barley. BMC Plant Biol. 2024;24(1):191. https://doi.org/10.1186/s12870-024-04863-6
  85. 85. Yang S, Zhang Z, Cong L, Wang X, Shi S. Effect of fulvic acid on the phosphorus availability in acid soil. J Soil Sci Plant Nut. 2013;13(3):526-33. https://doi.org/10.4067/S0718-95162013005000041
  86. 86. Li S, Yang Y, Li Y, Gao B, Tang Y, Xie J, et al. Remediation of saline-sodic soil using organic and inorganic amendments: physical, chemical and enzyme activity properties. J Soils Sediments. 2020;20:1454-67. https://doi.org/10.1007/s11368-019-02510-4
  87. 87. Zhu S, Mi J, Zhao B, Wang Z, Yang Z, Wang M, et al. Integrative transcriptome and metabolome analysis reveals the mechanism of fulvic acid alleviating drought stress in oat. Front Plant Sci. 2024;15:1439747. https://doi.org/10.3389/fpls.2024.1439747
  88. 88. Wu X, Zhang Y, Chu Y, Yan Y, Wu C, Cao K, et al. Fulvic acid alleviates the toxicity induced by calcium nitrate stress by regulating antioxidant and photosynthetic capacities and nitrate accumulation in Chinese flowering cabbage seedlings. Appl Sci. 2023;13(22):12373. https://doi.org/10.3390/app132212373
  89. 89. Singh P, Singh I, Shah K. Reduced activity of nitrate reductase under heavy metal cadmium stress in rice: an in-silico answer. Front Plant Sci. 2019;9:1948. https://doi.org/10.3389/fpls.2018.01948
  90. 90. Khilji SA, Sajid ZA, Fayyaz S, Shah AA, Shah AN, Rauf M, et al. Fulvic acid alleviates paper sludge toxicity in canola (Brassica napus L.) by reducing Cr, Cd and Pb uptake. Front Plant Sci. 2022;13:874723. https://doi.org/10.3389/fpls.2022.874723
  91. 91. Wang Y, Yang R, Zheng J, Shen Z, Xu X. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Ecotoxicol Environ Saf. 2019;167:10-9. https://doi.org/10.1016/j.ecoenv.2018.08.064
  92. 92. El-Basir A, Swelam WM, El-Metwaly H. Mitigatory effect of fertigation with humic, fulvic, phosphoric acids and seaweeds extract on heat stressed snap bean plants under Delta Region conditions. J Plant Prod. 2020;11(12):1607-13. https://doi.org/10.21608/jpp.2020.149833
  93. 93. Dinler BS, Gunduzer E, Tekinay T. Pre-treatment of fulvic acid plays a stimulant role in protection of soybean (Glycine max L.) leaves against heat and salt stress. Acta Biologica Cracoviensia Series Botanica. 2016;58(1). https://doi.org/10.1515/abcsb-2016-0002
  94. 94. Han K, Wang C, Gao Y, Zhang J, Xie J. Response of amino acids, phenolic acids, organic acids and mineral elements to fulvic acid in spinach (Spinacia oleracea L.) under nitrate stress. Sci Repo. 2025;15(1):9444. https://doi.org/10.1038/s41598-025-93974-7
  95. 95. Nikoogoftar-Sedghi M, Rabiei V, Razavi F, Molaei S, Khadivi A. Fulvic acid foliar application: a novel approach enhancing antioxidant capacity and nutritional quality of pistachio (Pistacia vera L.). BMC Plant Biol. 2024;24(1):241. https://doi.org/10.1186/s12870-024-04974-0
  96. 96. Chai H, Wu W, Liu Y, Wu W, Gao P. Effects of Biochar Extract and Mineral Potassium Fulvic Acid on Salt Tolerance of Shanghai Bok Choy. Sustain (2071-1050). 2024;16(24). https://doi.org/10.3390/su162411298
  97. 97. Wang M, Song G, Zheng Z, Mi X, Song Z. Exploring the impact of fulvic acid and humic acid on heavy metal availability to alfalfa in molybdenum contaminated soil. Sci Repo. 2024;14(1):32037. https://doi.org/10.1038/s41598-024-83813-6
  98. 98. Xu D, Deng Y, Xi P, Yu G, Wang Q, Zeng Q, et al. Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism. Food Chem. 2019;286:226-33. https://doi.org/10.1016/j.foodchem.2019.02.015
  99. 99. Yonghua X, Chenyang L, Jingshan B, He Z, Yuanhui C, Yunqing L. Microbial diversity and physicochemical properties in farmland soils amended by effective microorganisms and fulvic acid for cropping Asian ginseng. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2022;50(1):12563. https://doi.org/10.15835/nbha50112563
  100. 100. Zoheiri F, Hoseinifar SH, Mozanzadeh MT, Ahangarzadeh M, Lieke T, Van Doan H. Dietary fulvic acid increased growth, stress tolerance and disease resistance against Vibrio harveyi in Asian seabass (Lates calcarifer) juvenile. Aquac Repo. 2023;32:101738. https://doi.org/10.1016/j.aqrep.2023.101738

Downloads

Download data is not yet available.