Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

In vitro biocontrol mechanism of Trichoderma spp. against crown rot pathogens in banana

DOI
https://doi.org/10.14719/pst.8511
Submitted
25 March 2025
Published
05-11-2025

Abstract

Crown rot, caused by various fungal pathogens, is a major post-harvest disease of bananas, leading to significant storage losses. Biocontrol by antagonistic microorganisms is a promising alternative to synthetic fungicide application. Trichoderma spp. are well-known biological control agents due to their strong antagonistic properties. Soil samples were collected from banana-cultivated orchards in the districts of Mayurbhanj, Jagatsinghpur, Jajpur and Ganjam. A total of 4 Trichoderma species were isolated using the serial dilution method: T. asperellum (8 isolates), T. atroviride (4 isolates), T. harzianum (5 isolates) and T. hamatum (6 isolates). Based on their micro-morphological and cultural characteristics, bioagents were identified. Trichoderma isolates were selected for in vitro testing against the Fusarium species by conidia germination assay and dual culture assay. Among the tested isolates, T. asperellum showed the highest inhibition of conidial germination (88.24 %) and mycelial radial growth (91.22 %) of F. equiseti. T. atroviride showed the lowest level of inhibition of conidia germination and mycelial radial growth against the F. equiseti. Solid-phase microextraction (SPME) was applied to trap volatiles emitted by T. asperellum. The GC/MS profiling revealed the presence of antifungal compounds, including azetidine, 1-Methylideneindene, phenylethyl alcohol and fluoro(trinitro)methane, which are involved in antifungal activity and the dominant compound was tentatively identified as phenylethyl alcohol (PEA), making up 21.79 % of the peak area with 96.24 % match in 7.15 retention time. This study indicates that T. asperellum is an effective antagonistic biocontrol agent and can produce volatile antifungal compounds that involve major mechanisms against Fusarium spp. in vitro conditions.

References

  1. 1. Scott GJ. A review of root, tuber and banana crops in developing countries: past, present and future. Int J Food Sci Technol. 2021;56(3):1093–114. https://doi.org/10.1111/ijfs.14778
  2. 2. Kamel MA, Cortesi P, Saracchi M. Etiological agents of crown rot of organic bananas in Dominican Republic. Postharvest Biol Technol. 2016;120:112–20. https://doi.org/10.1016/j.postharvbio.2016.06.002
  3. 3. Alvindia DG, Kobayashi T, Yaguchi Y, et al. Symptoms and the associated fungi of postharvest diseases on non-chemical bananas imported from the Philippines. Jpn J Trop Agric. 2000;44(2):87–93. https://doi.org/10.11248/jsta1957.44.87
  4. 4. Calderón-Santoyo M, Iñiguez-Moreno M, Barros-Castillo JC, et al. Microencapsulation of citral with Arabic gum and sodium alginate for the control of Fusarium pseudocircinatum in bananas. Iran Polym J. 2022;31(5):665–76. https://doi.org/10.1007/s13726-022-01033-z
  5. 5. Xie L, Wu Y, Duan X, et al. Proteomic and physiological analysis provide an elucidation of Fusarium proliferatum infection, causing crown rot on banana fruit. Microbiol Res. 2022;256:126952. https://doi.org/10.1016/j.micres.2021.126952
  6. 6. Zeng LS, Zhao ZH, Lü S, et al. The Fusarium species isolated from banana and their phylogenetic relationships. Afr J Microbiol Res. 2013;7(7):617–32.
  7. 7. Fattahi E, Moghadam MM, Khanbabaei R. The effect of tricyclazole on testosterone changes and testicular structure in mice. J Babol Univ Med Sci. 2015;17(2):43–9. https://doi.org/10.22088/jbums.17.2.43
  8. 8. Baiyee B, Pornsuriya C, Ito SI, et al. Trichoderma spirale T76-1 displays biocontrol activity against leaf spot on lettuce (Lactuca sativa L.) caused by Corynespora cassiicola or Curvularia aeria. Biol Control. 2019;129:195–200. https://doi.org/10.1016/j.biocontrol.2018.10.018
  9. 9. Wonglom P, Ito SI, Sunpapao A. Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response, and promote plant growth in lettuce (Lactuca sativa). Fungal Ecol. 2020;43:100867. https://doi.org/10.1016/j.funeco.2019.100867
  10. 10. Elad Y. Biocontrol of foliar pathogens: mechanisms and application. Commun Agric Appl Biol Sci. 2003;68:17–24.
  11. 11. Troian RF, Steindorff AS, Ramada MH, et al. Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: evaluation of antagonism and expression of cell wall-degrading enzymes genes. Biotechnol Lett. 2014;36:2095–101. https://doi.org/10.1007/s10529-014-1583-5
  12. 12. Baiyee B, Ito SI, Sunpapao A. Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiol Mol Plant Pathol. 2019;106:96–101. https://doi.org/10.1016/j.pmpp.2018.12.009
  13. 13. Phoka N, Suwannarach N, Lumyong S, et al. Role of volatiles from the endophytic fungus Trichoderma asperelloides PSU-P1 in biocontrol potential and in promoting the plant growth of Arabidopsis thaliana. J Fungi. 2020;6(4):341. https://doi.org/10.3390/jof6040341
  14. 14. Martínez-Medina A, Alguacil MDM, Pascual JA, et al. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol. 2014;40:804–15. https://doi.org/10.1007/s10886-014-0478-1
  15. 15. Shi M, Chen L, Wang XW, et al. Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology. 2012;158(1):166–75. https://doi.org/10.1099/mic.0.052670-0
  16. 16. Reino JL, Guerrero RF, Hernández-Galán R, et al. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev. 2008;7:89–123. https://doi.org/10.1007/s11101-006-9032-2
  17. 17. Wu Q, Sun R, Ni M, et al. Identification of a novel fungus, Trichoderma asperellum GDFS1009 and comprehensive evaluation of its biocontrol efficacy. PLoS One. 2017;12(6):e0179957. https://doi.org/10.1371/journal.pone.0179957
  18. 18. Tao L, Zhang Y, Li Y, et al. Antagonistic activity of volatile metabolites from Trichoderma asperellum. Sheng Wu Gong Cheng Xue Bao. 2020;36(6):1181–9. https://doi.org/10.13345/j.cjb.190442
  19. 19. Vinale F, Sivasithamparam K, Ghisalberti EL, et al. Trichoderma secondary metabolites that affect plant metabolism. Nat Prod Commun. 2012;7(11):1934578X1200701133. https://doi.org/10.1177/1934578X1200701133
  20. 20. Leslie JF, Summerell BA. The Fusarium laboratory manual. New York:John Wiley & Sons; 2008.
  21. 21. Asis A, Shahriar SA, Naher L, et al. Identification patterns of Trichoderma strains using morphological characteristics, phylogenetic analyses and lignocellulolytic activities. Mol Biol Rep. 2021;48:3285–301. https://doi.org/10.1007/s11033-021-06321-0
  22. 22. Kubicek CP, Steindorff AS, Chenthamara K, et al. Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics. 2019;20:1–24. https://doi.org/10.1186/s12864-019-5680-7
  23. 23. Bissett J. A revision of the genus Trichoderma. II. Infrageneric classification. Can J Bot. 1991;69(11):2357–72. https://doi.org/10.1139/b91-297
  24. 24. Bissett J. A revision of the genus Trichoderma. III. Section Pachybasium. Can J Bot. 1991;69(11):2373–417. https://doi.org/10.1139/b91-298
  25. 25. Bissett J. A revision of the genus Trichoderma. IV. Additional notes on section Longibrachiatum. Can J Bot. 1991;69(11):2418–20. https://doi.org/10.1139/b91-299
  26. 26. Carvalho DD, Inglis PW, de Ávila ZR, et al. Morphological characteristics and genetic variability of Trichoderma spp. from conventional cotton crop soils in the Federal District, Brazil. J Agric Sci. 2018;10(8):146–57. https://doi.org/10.5539/jas.v10n8p146
  27. 27. Harman GE, Kubicek CP. Trichoderma and Gliocladium. Volume 1: Basic biology, taxonomy and genetics. London: CRC Press; 2002. https://doi.org/10.1201/9781482295320
  28. 28. Panebianco S, Vitale A, Polizzi G, et al. Enhanced control of postharvest citrus fruit decay by means of the combined use of compatible biocontrol agents. Biol Control. 2015;84:19–27. https://doi.org/10.1016/j.biocontrol.2015.02.001
  29. 29. González-Jiménez V, Moscoso-Ramírez PA, Ortiz-García CF, et al. Preventive and curative antifungal activity of the sodium silicate on postharvest crown rot in banana cv. Enano Gigante. Silicon. 2023;15(15):6683–93. https://doi.org/10.1007/s12633-023-02547-8
  30. 30. Hernández Castillo FD, Padilla AB, Morales GG, et al. In vitro antagonist action of Trichoderma strains against Sclerotinia sclerotiorum and Sclerotium cepivorum. 2011:410–7. https://doi.org/10.3844/ajabssp.2011.410.417
  31. 31. Rahman MA, Begum MF, Alam MF. Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing pineapple disease of sugarcane. Mycobiology. 2009;37(4):277–85. https://doi.org/10.4489/MYCO.2009.37.4.277
  32. 32. Wonglom P, Ito SI, Sunpapao A. Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response, and promote plant growth in lettuce (Lactuca sativa). Fungal Ecol. 2020;43:100867. https://doi.org/10.1016/j.funeco.2019.100867
  33. 33. Suwannarach N, Kaewyana C, Yodmeeklin A, et al. Evaluation of Muscodor cinnamomi as an egg biofumigant for the reduction of microorganisms on eggshell surfaces and its effect on egg quality. Int J Food Microbiol. 2017;244:52–61. https://doi.org/10.1016/j.ijfoodmicro.2016.12.021
  34. 34. Intana W, Kheawleng S, Sunpapao A. Trichoderma asperellum T76-14 released volatile organic compounds against postharvest fruit rot in muskmelons (Cucumis melo) caused by Fusarium incarnatum. J Fungi. 2021;7(1):46. https://doi.org/10.3390/jof7010046
  35. 35. Kim SH, Lee Y, Balaraju K, et al. Evaluation of Trichoderma atroviride and Trichoderma longibrachiatum as biocontrol agents in controlling red pepper anthracnose in Korea. Front Plant Sci. 2023;14:1201875. https://doi.org/10.3389/fpls.2023.1201875
  36. 36. Gams W, Bissett J. Morphology and identification of Trichoderma. In: Kubicek CP, Harman GE, editors. Trichoderma and Gliocladium: basic biology, taxonomy and genetics. London: Taylor & Francis Ltd; 2002. p. 3–31.
  37. 37. Sangeetha G, Usharani S, Muthukumar A. Biocontrol with Trichoderma species for the management of postharvest crown rot of banana. Phytopathol Mediterr. 2009;48(2):214–25.
  38. 38. Adebesin AA, Odebode CA, Ayodele AM. Control of postharvest rots of banana fruits by conidia and culture filtrates of Trichoderma asperellum. J Plant Prot Res. 2009;49(3):302–08. https://doi.org/10.2478/v10045-009-0049-6
  39. 39. Rahman SS, Zainudin NA, Aziz NA. Evaluation of Trichoderma asperellum B1902 in controlling Fusarium Wilt of Cavendish banana cultivar. Sains Malays. 2021;50:2549–61. https://doi.org/10.17576/jsm-2021-5009-05
  40. 40. Stracquadanio C, Quiles JM, Meca G, et al. Antifungal activity of bioactive metabolites produced by Trichoderma asperellum and Trichoderma atroviride in liquid medium. J Fungi. 2020;6(4):263. https://doi.org/10.3390/jof6040263
  41. 41. Baiyee B, Pornsuriya C, Ito SI, et al. Trichoderma spirale T76-1 displays biocontrol activity against leaf spot on lettuce (Lactuca sativa L.) caused by Corynespora cassiicola or Curvularia aeria. Biol Control. 2019;129:195–200. https://doi.org/10.1016/j.biocontrol.2018.10.018
  42. 42. Singh M, Chauhan A, Singh PK. Enhanced growth and suppression of Fusarium wilt in tomato plants through the action of Rhizophagus intraradices and Trichoderma viride. Vegetos. 2024:1–8. https://doi.org/10.1007/s42535-024-00935-y
  43. 43. Zhu YJ, Zhou HT, Hu YH, et al. Antityrosinase and antimicrobial activities of 2-phenylethanol, 2-phenylacetaldehyde and 2-phenylacetic acid. Food Chem. 2011;124(1):298–302. https://doi.org/10.1016/j.foodchem.2010.06.036
  44. 44. Siddiquee S, Cheong BE, Taslima K, et al. Separation and identification of volatile compounds from liquid cultures of Trichoderma harzianum by GC-MS using three different capillary columns. J Chromatogr Sci. 2012;50(4):358–67. https://doi.org/10.1093/chromsci/bms012
  45. 45. Liu P, Cheng Y, Yang M, et al. Mechanisms of action for 2-phenylethanol isolated from Kloeckera apiculata in control of Penicillium moulds of citrus fruits. BMC Microbiol. 2014;14:1–4. https://doi.org/10.1186/s12866-014-0242-2
  46. 46. Lester G. Inhibition of growth, synthesis and permeability in Neurospora crassa by phenethyl alcohol. J Bacteriol. 1965;90(1):29–37. https://doi.org/10.1128/jb.90.1.29-37.1965
  47. 47. Mo EK, Sung CK. Phenylethyl alcohol (PEA) application slows fungal growth and maintains aroma in strawberries. Postharvest Biol Technol. 2007;45(2):234–9. https://doi.org/10.1016/j.postharvbio.2007.02.005

Downloads

Download data is not yet available.