Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 4 (2025)

Agave spp.: Sap by-products and health benefits

DOI
https://doi.org/10.14719/pst.8532
Submitted
26 March 2025
Published
19-11-2025 — Updated on 04-12-2025
Versions

Abstract

Agave spp. is a monocotyledonous plant distributed across the American continent. More than 273 species have been documented, of which 215 are found in Mexico and 151 are endemic to the country. Historically, Agave spp. has been used in a variety of applications, including food, the production of alcoholic beverages, textiles and everyday utensils, depending on the culture and species. Commonly referred to as “maguey”, the various species of Agave have diverse applications for their residues and particularly the sap. Due to its nutritional composition, which is rich in fructooligosaccharides, vitamins, minerals, saponins and essential and non-essential amino acids, the sap has been associated with several positive health effects. These include antioxidant properties, prebiotic effects, enhanced mineral absorption, inhibition of adenoma and carcinoma precursor lesions and a low glycemic index, classifying it as a functional beverage. Noteworthy species include Agave salmiana and Agave atrovirens, which are the most significant for sap extraction and the production of pulque, an alcoholic beverage derived from the natural fermentation of Agave sap. This review aims to analyze the primary by-products that can be derived from the sap of the commonly used Agave spp. species and evaluate their reported health benefits in vitro and in vivo studies, to promote the increased utilization of Agave sap based on scientific evidence.

References

  1. 1. Álvarez-Ríos GD, Figueredo-Urbina CJ, Casas A. Management systems of maguey pulquero in Mexico. Rev Etnobiol. 2020;18(2):3-23.
  2. 2. Chacón-Vargas K, Torres J, Giles-Gómez M, Escalante A, Gibbons JG. Genomic profiling of bacterial and fungal communities and their predictive functionality during pulque fermentation by whole-genome shotgun sequencing. Sci Rep. 2020;10(1):15115. https://doi.org/10.1038/s41598-020-71864-4
  3. 3. Ramírez Rodríguez R. Especialización agrícola de la región de los Llanos de Apan. Estud Hist Novohisp. 2021;(64):41-81. https://doi.org/10.22201/iih.24486922e.2021.64.72022
  4. 4. Valdivieso Solís DG, Vargas Escamilla CA, Mondragón Contreras N, Galván Valle GA, Gilés-Gómez M, Bolívar F, et al. Sustainable production of pulque and maguey in Mexico: current situation and perspectives. Front Sustain Food Syst. 2021;5:678168. https://doi.org/10.3389/fsufs.2021.678168
  5. 5. Villavicencio-Gutiérrez M del R, Martínez-Castañeda FE, Martínez-Campos AR. Evaluation of the maguey product portfolio for rural cooperatives in Mexico. J Agric Environ Int Develop. 2018;112(2):361-80.
  6. 6. Narváez Suárez AU, Martínez Saldaña T, Jiménez-Velázquez M. El cultivo de maguey pulquero: opción para el desarrollo de comunidades rurales del altiplano mexicano. Revista de Geografía Agrícola. 2016;(56):33-44. https://doi.org/10.5154/r.rga.2016.56.005
  7. 7. Guzmán-Pedraza R, Contreras-Esquivel JC. Aguamiel y su fermentación: ciencia más allá de la tradición. Mexican J Biotechnol. 2018;3(1):1-22. https://doi.org/10.29267/mxjb.2018.3.1.1
  8. 8. Eguiarte LE, Jiménez Barrón OA, Aguirre-Planter E, Scheinvar E, Gámez N, Gasca-Pineda J, et al. Evolutionary ecology of Agave: distribution patterns, phylogeny, and coevolution (an homage to Howard S. Gentry). Am J Bot. 2021;108(2):216-35. https://doi.org/10.1002/ajb2.1609
  9. 9. Torres-García I, Rendón-Sandoval FJ, Blancas J, Casas A, Moreno-Calles AI. The genus Agave in agroforestry systems of Mexico. Bot Sci. 2019;97(3):263-90. https://doi.org/10.17129/botsci.2202
  10. 10. Perales Aguilar L, Santos Díaz Ma del S, Gómez Aguirre YA, Ramos Gómez MS, Perez Molphe Balch E. Análisis in vitro de la acumulación de metales pesados en plantas de la familia Asparagaceae tolerantes a la baja disponibilidad de agua. Nova Scientia. 2020;12(24). https://doi.org/10.21640/ns.v12i24.2081
  11. 11. MacNeish RS. Ancient Mesoamerican civilization. Science. 1964;143(3606):531-7. https://doi.org/10.1126/science.143.3606.531
  12. 12. Robertson IG, Cabrera Cortés MO. Teotihuacan pottery as evidence for subsistence practices involving maguey sap. Archaeol Anthropol Sci. 2017;9(1):11-27. https://doi.org/10.1007/s12520-016-0415-z
  13. 13. Astudillo F, Escalante A. Los beneficios de una bebida prehispánica en nuestros días: pulque para todos (segunda y última parte); 2022.
  14. 14. Figueredo-Urbina CJ, Medina-Pérez G, Juárez-Muñoz J, González-Tenorio R, Peláez-Acero A, Arce-Cervantes O. Caracterización del metzal: una de las bondades del Agave pulquero. Mexican J Technol Eng. 2023;2(2):10-21. https://doi.org/10.61767/mjte.002.2.1021
  15. 15. García Montes MA, Figueredo-Urbina CJ, Bucio Peña R, Leonel Cruz AL. Los chinicuiles o gusanos rojos del maguey. Biología y Sociedad. 2023;6(12):41-7. https://doi.org/10.29105/bys6.12-90
  16. 16. Escobedo-García S, Flores-Gallegos AC, Salas-Tovar JA, González-Herrera SM, Palomo-Ligas L, Campos-Muzquiz LG, et al. Agave bagasse cookies as a carbon source for lactic acid bacteria. Environ Qual Manag. 2024;33(3):113-20. https://doi.org/10.1002/tqem.22051
  17. 17. Sánchez-Ramírez J, Martínez-Hernández JL, Segura-Ceniceros P, López G, Saade H, Medina-Morales MA, et al. Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave atrovirens lignocellulosic biomass hydrolysis. Bioprocess Biosyst Eng. 2017;40(1):9-22. https://doi.org/10.1007/s00449-016-1670-1
  18. 18. Nava-Cruz NY, Contreras-Esquivel JC, Aguilar-González MA, Nuncio A, Rodríguez-Herrera R, Aguilar CN. Agave atrovirens fibers as substrate and support for solid-state fermentation for cellulase production by Trichoderma asperellum. 3 Biotech. 2016;6(1):115. https://doi.org/10.1007/s13205-016-0426-6
  19. 19. Simón J, Villanueva-Maldonado J, Castillo-Soria FR, Cardenas-Juarez M, Briones E, Sandoval-Arechiga R, et al. Comparison of the microwave absorption properties of Opuntia ficus-indica, Agave atrovirens, and Cocos nucifera L. husk. Int J Antennas Propag. 2019;2019:1-6. https://doi.org/10.1155/2019/5872141
  20. 20. Marquez-Pallares L, Aguila-Munoz J, Honorato-Salazar JA, Trejo-Estrada SR. Morphological and biochemical analyses of Agave salmiana varieties. Agrociencia. 2024. https://doi.org/10.47163/agrociencia.v58i2.2841
  21. 21. Arrazola-Cárdenas L, García-Nava JR, Robledo-Paz A, Ybarra-Moncada MC, Muratalla-Lúa A. Sustratos y dosis de fertirrigación en la acumulación de azúcares totales y el crecimiento de Agave salmiana (Asparagaceae). Polibotanica. 2020;(50). https://doi.org/10.18387/polibotanica.50.8
  22. 22. Flores-Morales A, Chávez-Ávila VM, Jiménez-Estrada M. Evaluation of an alternative propagation of maguey pulquero (Agave salmiana) long-spike variety. Mexican J Agroecosyst. 2021;8(1):46-58.
  23. 23. Cruz Vasconcelos ST, Ruiz Posadas L del M, García Moya E, Sandoval Villa M, Cruz Huerta N. Crecimiento y tasa de intercambio de CO₂ de maguey pulquero (Agave salmiana Otto ex Salm-Dyck) obtenido por semilla. Agrociencia. 2021;54(7):911-26. https://doi.org/10.47163/agrociencia.v54i7.2242
  24. 24. Desgarennes D, Garrido E, Torres-Gomez MJ, Peña-Cabriales JJ, Partida-Martinez LP. Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species. FEMS Microbiol Ecol. 2014;90(3):844-57. https://doi.org/10.1111/1574-6941.12438
  25. 25. Aguado-Santacruz GA, Aguado-Rodríguez DL, Moreno-Gómez B, Arroyo-González D, Centeno-Jamaica D, Aguirre-Mancilla C, et al. Endomicrobiota bacteriana de agave pulquero (Agave salmiana). I. Aislamiento, frecuencia e identificación molecular. Revista Fitotecnia Mexicana. 2022;45(2):243. https://doi.org/10.35196/rfm.2022.2.243
  26. 26. Santos-Zea L, Gutierrez-Uribe JA, Benedito J. Effect of solvent composition on ultrasound-generated intensity and its influence on the ultrasonically assisted extraction of bioactives from Agave bagasse (Agave salmiana). Food Eng Rev. 2021;13(3):713-25. https://doi.org/10.1007/s12393-020-09260-x
  27. 27. España Rodríguez M, Hernández Domínguez EM, Velázquez De Lucio BS, Villa García M, Álvarez Cervantes J. Productividad y análisis químico proximal de Pleurotus spp. crecidos sobre bagazo de Agave salmiana como sustrato alternativo. Agrociencia. 2021;55(7):569-81. https://doi.org/10.47163/agrociencia.v55i7.2604
  28. 28. Silva-Mendoza J, Gómez-Treviño A, López-Chuken U, Blanco-Gámez EA, Chávez-Guerrero L, Cantú-Cárdenas ME. Agave leaves as a substrate for the production of cellulases by Penicillium sp. and the obtainment of reducing sugars. J Chem. 2020;2020:1-7. https://doi.org/10.1155/2020/6092165
  29. 29. Blas-Yañez S, Thomé-Ortiz H, Vizcarra-Bordi I, Espinoza-Ortega A. Street sale of pulque and sociospatial practices: a gender perspective in central Mexico. J Ethn Foods. 2018;5(4):233-42. https://doi.org/10.1016/j.jef.2018.10.005
  30. 30. Roldan Cruz EI, Medina Mendoza C. Experiencia en la incidencia en la red agroalimentaria maguey-aguamiel-pulque. Revista de Estudios Regionales Nueva Época. 2023;1(1):151-64. https://doi.org/10.59307/rerne1.110
  31. 31. Parsons JR, Parsons MH. Maguey utilization in highland central Mexico: an archaeological ethnography. The Regents of the University of Michigan; 1990. https://doi.org/10.3998/mpub.11396300
  32. 32. Villarreal Morales SL, Enríquez Salazar MI, Michel Michel MR, Flores Gallegos AC, Montañez-Saens J, Aguilar CN, et al. Metagenomic microbial diversity in aguamiel from two Agave species during 4-year seasons. Food Biotechnol. 2019;33(1):1-16. https://doi.org/10.1080/08905436.2018.1547200
  33. 33. Huezcas-Garrido L, Alanís-García E, Ariza-Ortega JA, Zafra-Rojas QY. Subproductos de interés nutricional y funcional de Agave salmiana. Rev Chil Nutr. 2022;49(2):250-62. https://doi.org/10.4067/S0717-75182022000200250
  34. 34. Espíndola-Sotres V, Trejo-Márquez MA, Lira VAA, Pascual-Bustamante S. Characterization of aguamiel and agave syrup originating from the State of Mexico, Hidalgo and Tlaxcala. Investig Desarro Cienc Tecnol Aliment. 2018;74(3):522-8.
  35. 35. Rojo-Burgos M. Fructooligosaccharides and nutraceutical quality of Agave salmiana syrup obtained at low pressures. Universidad Autónoma Chapingo; 2021.
  36. 36. Balderas-Hernández VE, Medina-Rivero E, Barba-De la Rosa AP, De Leon-Rodriguez A. Agave salmiana syrup improves the production of recombinant human interleukin-2 in Escherichia coli. Rev Mex Ing Quim. 2020;20(1):399-412. https://doi.org/10.24275/rmiq/Bio2004
  37. 37. González-Montemayor ÁM, Flores-Gallegos AC, Serrato-Villegas LE, Ruelas-Chacón X, López MG, Rodríguez-Herrera R. Processing temperature effect on the chemical content of concentrated aguamiel syrups obtained from two different Agave species. J Food Meas Charact. 2020;14(3):1733-43. ttps://doi.org/10.1007/s11694-020-00421-4
  38. 38. Escalante A, Elena Rodríguez M, Martínez A, López-Munguía A, Bolívar F, Gosset G. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis. FEMS Microbiol Lett. 2004;235(2):273-9. https://doi.org/10.1111/j.1574-6968.2004.tb09599.x
  39. 39. Escalante A, López Soto DR, Velázquez Gutiérrez JE, Giles-Gómez M, Bolívar F, López-Munguía A. Pulque, a traditional Mexican alcoholic fermented beverage: historical, microbiological, and technical aspects. Front Microbiol. 2016;7:1026. https://doi.org/10.3389/fmicb.2016.01026
  40. 40. Anderson RK, Calvo J, Serrano G, Payne GC. A study of the nutritional status and food habits of Otomi Indians in the Mezquital Valley of Mexico. Am J Public Health Nations Health. 1946;36(8):883-903. https://doi.org/10.2105/AJPH.36.8.883
  41. 41. Sanchez-Marroquin A, Hope PH. Agave juice, fermentation and chemical composition studies of some species. J Agric Food Chem. 1953;1(3):246-9. https://doi.org/10.1021/jf60003a007
  42. 42. Morales de León J, Camacho ME, Bourges H. Amino acid composition of some Mexican foods. Arch Latinoam Nutr. 2005;55(2):172-86.
  43. 43. Backstrand JR, Allen LH, Black AK, de Mata M, Pelto GH. Diet and iron status of nonpregnant women in rural Central Mexico. Am J Clin Nutr. 2002;76(1):156-64. https://doi.org/10.1093/ajcn/76.1.156
  44. 44. Alcántara-Zavala AE, Figueroa-Cárdenas J de D, Morales-Sánchez E, Aldrete-Tapia JA, Arvizu-Medrano SM, Martínez-Flores HE. Application of ohmic heating to extend shelf life and retain the physicochemical, microbiological, and sensory properties of pulque. Food Bioprod Process. 2019;118:139-48. https://doi.org/10.1016/j.fbp.2019.09.007
  45. 45. Reyes-Montaño CN, Quintero-Salazar B, Barrera-García D. Documento de la elaboración, comercialización y consumo del pan de pulque tradicional en la cabecera municipal de Villa Guerrero, Estado de México. Asociación Latinoamericana de Sociología; 2019.
  46. 46. Sánchez-Maldonado M, Salas-Cortés J. La construcción de la memoria y la identidad cultural de los saltillenses a través de notas periodísticas sobre el pan de pulque y el Merendero Saltillo. Axon. 2018;120-5.
  47. 47. Torres-Maravilla E, Blancas Napolés A, Vázquez-Landaverde PA, Cristiani-Urbina E. Evaluation of pulque (xaxtle) sediments as starter culture to obtain a low glycemic index baking product. Agrociencia. 2016;50(2):183-200.
  48. 48. Carlos Delgado AA. Development and evaluation of a functional muffin-type bread based on Agave salmiana residues added with probiotics. [Saltillo]: Universidad Autónoma Agraria Antonio Narro; 2022.
  49. 49. Oroian M, Escriche I. Antioxidants: characterization, natural sources, extraction and analysis. Food Res Int. 2015;74:10-36. https://doi.org/10.1016/j.foodres.2015.04.018
  50. 50. Ozgen M, Reese RN, Tulio AZ, Scheerens JC, Miller AR. Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem. 2006;54(4):1151-7.
  51. 51. Kuskoski EM, Asuero AG, Troncoso AM, Mancini-Filho J, Fett R. Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Cienc Tecnol Aliment. 2005;25(4):726-32. https://doi.org/10.1590/S0101-20612005000400016
  52. 52. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem. 1996;239(1):70-6. https://doi.org/10.1006/abio.1996.0292
  53. 53. Tovar-Robles CL, Perales-Segovia C, Cedillo AN, Valera-Montero LL, Gómez-Leyva JF, Guevara-Lara F, et al. Effect of aguamiel (Agave sap) on hematic biometry in rabbits and its antioxidant activity determination. Ital J Anim Sci. 2011;10(2):e21. https://doi.org/10.4081/ijas.2011.e21
  54. 54. Chagua Rodriguez P, Malpartida Yapias RJ, Ruíz Rodriguez A. Pasteurization time and its response in the chemical characteristics and antioxidant capacity of aguamiel from Agave americana L. Rev Investig Altoandinas. 2020.
  55. 55. Hernández-Ramos L, García-Mateos R, Ybarra-Moncada MAC, Colinas-León MT. Nutritional value and antioxidant activity of the maguey syrup (Agave salmiana and A. mapisaga) obtained through three treatments. Not Bot Horti Agrobot Cluj Napoca. 2020;48(3):1306-16. https://doi.org/10.15835/nbha48311947
  56. 56. Corona-Pérez AC. Ozonization for microbiological stability, physicochemical and nutraceutical quality of Agave salmiana mead. Universidad Autónoma de Chapingo; 2021.
  57. 57. López-Martínez E. Optimization of the thermoultrasound process in mead from maguey manso (Agave atrovirens Karw) on its microbiological, physicochemical and antioxidant properties. Universidad Autónoma del Estado de Hidalgo; 2018.
  58. 58. Lanza E, Yu B, Murphy G, Albert PS, Caan B, Marshall JR, et al. The Polyp Prevention Trial-continued follow-up study: no effect of a low-fat, high-fiber, high-fruit, and -vegetable diet on adenoma recurrence eight years after randomization. Cancer Epidemiol Biomarkers Prev. 2007;16(9):1745-52. https://doi.org/10.1158/1055-9965.EPI-07-0127
  59. 59. Costabile A, Kolida S, Klinder A, Gietl E, Bäuerlein M, Frohberg C, et al. A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects. Br J Nutr. 2010;104(7):1007-17. https://doi.org/10.1017/S0007114510001571
  60. 60. Romero-López MR, Osorio-Díaz P, Flores-Morales A, Robledo N, Mora-Escobedo R. Chemical composition, antioxidant capacity and prebiotic effect of aguamiel (Agave atrovirens) during in vitro fermentation. Rev Mex Ing Quim. 2015;14(2):281-92.
  61. 61. Arrizon J, Morel S, Gschaedler A, Monsan P. Comparison of the water-soluble carbohydrate composition and fructan structures of Agave tequilana plants of different ages. Food Chem. 2010;122(1):123-30. https://doi.org/10.1016/j.foodchem.2010.02.028
  62. 62. Torres-Rodríguez I, Rodríguez-Alegría ME, Miranda-Molina A, Giles-Gómez M, Conca Morales R, López-Munguía A, et al. Screening and characterization of extracellular polysaccharides produced by Leuconostoc kimchii isolated from traditional fermented pulque beverage. Springerplus. 2014;3(1):583. https://doi.org/10.1186/2193-1801-3-583
  63. 63. Martínez-Garmiño D, García Soto MJ, González-Acevedo O, Godinez-Hernández C, Juárez-Flores B, Ortíz-Basurto RI, et al. Prebiotic effect of fructans from Agave salmiana on probiotic lactic acid bacteria and in children as a supplement for malnutrition. Food Funct. 2022;13(7):4184-93. https://doi.org/10.1039/D1FO03852D
  64. 64. Maftei NM, Raileanu CR, Balta AA, Ambrose L, Boev M, Marin DB, et al. The potential impact of probiotics on human health: an update on their health-promoting properties. Microorganisms. 2024;12(2):234. https://doi.org/10.3390/microorganisms12020234
  65. 65. Byakika S, Mukisa IM, Byaruhanga YB, Muyanja C. A review of criteria and methods for evaluating the probiotic potential of microorganisms. Food Rev Int. 2019;35(5):427-66. https://doi.org/10.1080/87559129.2019.1584815
  66. 66. Torres-Maravilla E, Lenoir M, Mayorga-Reyes L, Allain T, Sokol H, Langella P, et al. Identification of novel anti-inflammatory probiotic strains isolated from pulque. Appl Microbiol Biotechnol. 2016;100(1):385-96. https://doi.org/10.1007/s00253-015-7049-4
  67. 67. Giles-Gómez M, Sandoval García JG, Matus V, Campos Quintana I, Bolívar F, Escalante A. In vitro and in vivo probiotic assessment of Leuconostoc mesenteroides P45 isolated from pulque, a Mexican traditional alcoholic beverage. Springerplus. 2016;5(1):708. https://doi.org/10.1186/s40064-016-2370-7
  68. 68. Cervantes-Elizarrarás A, Cruz-Cansino N del S, Ramírez-Moreno E, Vega-Sánchez V, Velázquez-Guadarrama N, Zafra-Rojas QY, et al. In vitro probiotic potential of lactic acid bacteria isolated from aguamiel and pulque and antibacterial activity against pathogens. Appl Sci. 2019;9(3):601. https://doi.org/10.3390/app9030601
  69. 69. Vera-Morales JM, Vargas-Hernández M, Dector-Espinoza A, Amaya-Cruz DM. Aguamiel and pulque: more than traditional beverages. Perspect Sci Technol. 2023;7(12):40-51. https://doi.org/10.61820/pct.v7i12.1117
  70. 70. García-Calvo W. Kinetic evaluation of cellulolytic enzyme production of probiotic microorganisms in liquid culture using mead as substrate. Universidad Autónoma Agraria Antonio Narro; 2022.
  71. 71. Enríquez-Salazar MI, Veana F, Aguilar CN, De la Garza-Rodríguez IM, López MG, Rutiaga-Quiñones OM, et al. Microbial diversity and biochemical profile of aguamiel collected from Agave salmiana and A. atrovirens during different seasons of year. Food Sci Biotechnol. 2017;26(4):1003-11. https://doi.org/10.1007/s10068-017-0141-z
  72. 72. Rodríguez Juárez FA, Urbina Carrasco HS, Zapata Hernández A. Pulque: contenido probiótico y potencial en la industria biotecnológica. RD-ICUAP. 2021;95-110. https://doi.org/10.32399/icuap.rdic.2448-5829.2021.20.601
  73. 73. Whisner CM, Castillo LF. Prebiotics, bone and mineral metabolism. Calcif Tissue Int. 2018;102(4):443-79. https://doi.org/10.1007/s00223-017-0339-3
  74. 74. García-Vieyra MI, Del Real A, López MG. Agave fructans: their effect on mineral absorption and bone mineral content. J Med Food. 2014;17(11):1247-55. https://doi.org/10.1089/jmf.2013.0137
  75. 75. Albornoz-Ramos KL, Cristobal-Solorzano ML, Herrera-Salvatierra KN. Effectiveness of agave (Agave tequilana) in improving calcium absorption in laboratory rats. [Huanuco]: Professional School of Nursing; 2020.
  76. 76. Solis-Chavez SA. Effect of Agave-type inulin intake on blood calcium and phosphorus concentrations in a population of Rhesus monkeys with bone density known by computed axial tomography (CT). Universidad Autónoma Metropolitana Unidad Iztapalapa; 2020.
  77. 77. Mónica Alejandra RA, Alma Elizabeth CG. Obtención de fructooligosacáridos de Agave y su potencial biológico: un artículo de revisión. Cienc Lat Rev Cient Multidiscip. 2023;7(2):11710-34. https://doi.org/10.37811/cl_rcm.v7i2.7526
  78. 78. Velázquez Ríos IO, González-García G, Mellado-Mojica E, Veloz García RA, Dzul Cauich JG, López MG, et al. Phytochemical profiles and classification of Agave syrups using 1H-NMR and chemometrics. Food Sci Nutr. 2019;7(1):3-13. https://doi.org/10.1002/fsn3.755
  79. 79. Cerda De Los Santos KL. Evaluation of phenolic content, antioxidant activity and antidiabetic effects of Agave (A. atrovirens Karw) syrup extracts. TEC de Monterrey; 2011.
  80. 80. García-Pedraza LG, Juárez-Flores BI, Aguirre-Rivera JR, Pinos-Rodríguez JM. Effects of Agave salmiana Otto ex Salm-Dick high-fructose syrup on non-diabetic and streptozotocin-diabetic rats. J Med Plants Res. 2009;3(11):932-40.
  81. 81. Cerón-Zamora C. In vitro glycemic index and antioxidant activity of agave syrup obtained by rotary evaporation under vacuum. Universidad Autónoma del Estado de Hidalgo; 2022.
  82. 82. Soto-Alarcón JM, González-Gómez DX, González Olivares LG, Castañeda Ovando A. Hacer comunes con el maguey pulquero en Hidalgo, México. Rev Cient Estud Urbano Reg Hatsö-Hnini. 2022;1(1):1-18. https://doi.org/10.47386/2022V1N2IJDAHC
  83. 83. Ferraiuolo M, Pulito C, Finch-Edmondson M, Korita E, Maidecchi A, Donzelli S, et al. Agave negatively regulates YAP and TAZ transcriptionally and post-translationally in osteosarcoma cell lines. Cancer Lett. 2018;433:18-32. https://doi.org/10.1016/j.canlet.2018.06.021

Downloads

Download data is not yet available.