This is an outdated version published on 13-07-2025. Read the
most recent version.
Review Articles
Early Access
Carbon sequestration potential of eucalyptus-based agroforestry and cropping systems
Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam 641 301, Tamil Nadu, India
Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Horticultural College and Research Institute, Tamil Nadu Agricultural University, Paiyur 635 112, Tamil Nadu, India
Abstract
Eucalyptus plantations and agroforestry systems have garnered significant interest due to their ability to capture carbon and mitigate climate change. This review assesses the carbon sequestration potential of eucalyptus-based systems, emphasizing their effectiveness in lowering atmospheric carbon dioxide (CO₂) levels. In India, eucalyptus plantations exhibit carbon sequestration rates between 9.62 and 11.4 Mg ha-1 per year, with a total accumulation of up to 237.2 Mg C ha-1 over their lifespan. Various factors, including plantation age, soil quality and management strategies, influence this potential. Older plantations have greater carbon storage capacity, making them vital for long-term mitigation efforts. In addition to monoculture plantations, agroforestry systems integrating eucalyptus, such as silvi-pastoral, agri-silvicultural and boundary plantations, provide a comprehensive approach to carbon sequestration. These systems not only enhance carbon accumulation in both biomass and soil but also offer economic and environmental advantages, such as improved soil health, biodiversity conservation and livelihood support for farmers. Short-rotation eucalyptus plantations and agroforestry models can capture up to 10 Mg C ha-1 annually, contributing significantly to long-term carbon storage. Notably, eucalyptus species have also demonstrated potential for bio drainage in waterlogged areas due to their high transpiration capacity, though concerns regarding excessive water use have led to regulatory restrictions in certain Indian states. In regions facing land-use constraints, incorporating eucalyptus into agroforestry serves as a viable solution for sustainable carbon management. However, while eucalyptus plantations offer significant carbon sequestration benefits, their high water demand and potential groundwater depletion necessitate careful site selection, appropriate species choice and sustainable management to mitigate adverse effects. This review underscores the crucial role of eucalyptus plantations and agroforestry systems in global carbon sequestration initiatives. By increasing carbon storage in biomass and soil, these systems present an effective strategy for addressing climate change while delivering socio-economic and environmental benefits. Further research and the development of optimized management practices are needed to maximize their carbon sequestration potential while ensuring ecological sustainability.
References
- 1. Desta TT, Teklemariam H, Mulugeta T. Insights of smallholder farmers on the trade-offs of eucalyptus plantation. Environ Chall. 2023;10:100663. https://doi.org/10.1016/j.envc.2022.100663
- 2. Hoogar R, Malakannavar S, Sujatha HT. Impact of eucalyptus plantations on ground water and soil ecosystem in dry regions. J Pharmacogn Phytochem. 2019;8:2929-33.
- 3. Jeet R, Dagar JC, Lal K, Singh G, Toky OP, Tanwar RS, et al. Biodrainage to combat water logging, increase farm productivity and sequester carbon in canal command area of north-west India. Curr Sci. 2011;100:1673-80.
- 4. Behera L, Ray L, Ranjan Nayak M, Mehta A. Carbon sequestration potential of Eucalyptus spp.: a review. E-Planet. 2020;18(1):79-84.
- 5. Sanjaykrishnan CK, Ravi R, M.P MPD, Sekar I. Suitability of Melia dubia and Eucalyptus tereticornis for particleboard production. Pharma Innov. 2022;11:258-62. https://doi.org/10.22271/tpi.2022.v11.i8Sd.14729
- 6. Mosisa GB, Tassie N, Adula M. Current and future distribution of Eucalyptus globulus under changing climate in Ethiopia: implications for forest management. Environ Syst Res. 2024;13(1):4. https://doi.org/10.1186/s40068-024-00332-z
- 7. Kaur A, Monga R. Eucalyptus trees plantation: a review on suitability and their beneficial role. Int J Bioresour Stress Manag. 2021;12(1):16-25. https://doi.org/10.23910/1.2021.2174
- 8. Alcorn P, Forrester D, Smith G, Thomas D, James R, Nicotra A, et al. Crown structure and vertical foliage distribution in 4-year-old plantation-grown Eucalyptus pilularis and Eucalyptus cloeziana. Trees. 2013;27:555-66. https://doi.org/10.1007/s00468-012-0809-1
- 9. Sadono R, Wardhana W, Idris F, Wirabuana PYAP. Carbon storage and energy production of Eucalyptus urophylla developed in dryland ecosystems at East Nusa Tenggara. J Degrad Min Lands Manag. 2021;9(1):3107. https://doi.org/10.15243/jdmlm.2021.091.3107
- 10. Chavan SB, Dhillon RS, Sirohi C, Uthappa AR, Jinger D, Jatav HS, et al. Carbon sequestration potential of commercial agroforestry systems in Indo-Gangetic Plains of India: poplar and eucalyptus-based agroforestry systems. Forests. 2023;14(3):559. https://doi.org/10.3390/f14030559
- 11. de Oliveira TWG, Rubilar R, Sanquetta CR, Corte APD, Medina A, Mardones O, et al. Differences in early seasonal growth efficiency and productivity of eucalyptus genotypes. New For. 2022;53(5):811-29. https://doi.org/10.1007/s11056-021-09888-5
- 12. Rezende GDSP, de Resende MDV, de Assis TF. Eucalyptus breeding for clonal forestry. In: Fenning T, editor. Challenges and opportunities for the world's forests in the 21st century. Dordrecht: Springer Netherlands; 2014. p. 393-424. https://doi.org/10.1007/978-94-007-7076-8_16
- 13. Martins W, Corrêa R, Sousa J, Souza P. Biomass and carbon in two planting densities of eucalypt hybrids of energy forests. Sci For. 2022;50:e3585. https://doi.org/10.18671/scifor.v50.02
- 14. Madiwalar A, Dhillon GP, Abbas G, Banoo R, Singh D. Growth and carbon storage potential of different eucalyptus clones irrigated with industrial effluents. Biol Forum Int J. 2023;15(10):1090-6.
- 15. Singh A, Singh P, Dhillon G, Sharma S, Singh B, Gill R. Differential impacts of soil salinity and water logging on eucalyptus growth and carbon sequestration under mulched vs. unmulched soils in south-western Punjab, India. Plant Soil. 2023;482(1):401-25. https://doi.org/10.1007/s11104-022-05700-1
- 16. Amarasinghe WTD, Terada T, Yamamoto H. Enhancing the carbon sequestration of high-elevation eucalyptus plantations in Sri Lanka for future carbon market activities. J For Res. 2021;26(5):351-7. https://doi.org/10.1080/13416979.2021.1927501
- 17. Ganesh K, Pragasan LA. Effects of nitrogen addition on Eucalyptus globulus growth and carbon sequestration potential under various CO2 climatic conditions. Geo Ecol Landscapes. 2024;8(2):185-93. https://doi.org/10.1080/24749508.2022.2109834
- 18. Pihlblad J, Rütting L, Macdonald C, Ellsworth D, Carrillo Y. The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature eucalyptus woodland. Biogeosciences. 2023;20:505-21. https://doi.org/10.5194/bg-20-505-2023
- 19. Ochoa-Hueso R, Juan PN, Power S. Decoupling of nutrient cycles in a Eucalyptus woodland under elevated CO2. J Ecol. 2019;107:2532-40. https://doi.org/10.1111/1365-2745.13219
- 20. Lawler I, Foley W, Woodrow I, Cork S. The effects of elevated CO2 atmospheres on the nutritional quality of eucalyptus foliage and its interaction with soil nutrient and light availability. Oecologia. 1996;109:59-68. https://doi.org/10.1007/s004420050058
- 21. AN YI-U, Avudainayagam S. Carbon storage potential of Eucalyptus tereticornis plantations. Indian For. 2014;140(1):53-8.
- 22. Ribeiro FP, Gatto A, Oliveira ADd, Pulrolnik K, Valadão MBX, Araújo JBCN, et al. Carbon storage in different compartments in eucalyptus stands and native cerrado vegetation. Plants. 2023;12(14):2751. https://doi.org/10.3390/plants12142751
- 23. Marimpan LS, Purwanto RH, Wardhana W, Sumardi S. Carbon storage potential of Eucalyptus urophylla at several density levels and forest management types in dry land ecosystems. Biodiversitas J Biol Divers. 2022;23(6). https://doi.org/10.13057/biodiv/d230607
- 24. Divya M, Mathuram IAG, Manivasakan S, Ravi R, Baranidharan K, Packialakshmi M. Assessing the carbon sequestration potential of eucalyptus plantations of different ages. Pharma Innov. 2022;11(4):844-9.
- 25. Du H, Zeng FP, Peng WX, Wang K-L, Zhang H, Liu L, et al. Carbon storage in a Eucalyptus plantation chronosequence in southern China. Forests. 2015;6:1763-78. https://doi.org/10.3390/f6061763
- 26. Torres CMME, Jacovine LAG, Nolasco de Olivera Neto S, Fraisse CW, Soares CPB, de Castro Neto F, et al. Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil. Sci Rep. 2017;7(1):16738. https://doi.org/10.1038/s41598-017-16821-4
- 27. Sarangle S, Rajasekaran A, Benbi D, Chauhan S. Biomass and carbon stock, carbon sequestration potential under selected land use systems in Punjab. For Res Eng Int J. 2018;9(2):75-80. https://doi.org/10.15406/freij.2018.02.00029
- 28. Noiha Noumi V, Zapfack L, Hamadou MR, Awe Djongmo V, Witanou N, Nyeck B, et al. Floristic diversity, carbon storage and ecological services of Eucalyptus agrosystems in Cameroon. Agrofor Syst. 2018;92(2):239-50. https://doi.org/10.1007/s10457-017-0130-5
- 29. Raj D, Jhariya M, Bargali S. Bund based agroforestry using Eucalyptus species: a review. Curr Agric Res J. 2016;4:148-58. https://doi.org/10.12944/CARJ.4.2.04
- 30. Jain A, Mehta N. Carbon sequestration and crop productivity in Eucalyptus-wheat agroforestry system. Int J Ecol Environ Sci. 2020;46(3-4):223-30.
- 31. Noiha Noumi V, Djongmo V, Boris N, Tabue Mbobda RB, Zapfack L. Vegetation structure, carbon sequestration potential and species conservation in four agroforestry systems in Cameroon (Tropical Africa). Acta Bot Bras. 2018;32. https://doi.org/10.1590/0102-33062017abb0279
- 32. Smith R, Renton M, Reid N. Growth and carbon sequestration by remnant Eucalyptus camaldulensis woodlands in semi-arid Australia during La Niña conditions. Agric For Meteorol. 2017;232:704-10. https://doi.org/10.1016/j.agrformet.2016.10.014
- 33. Zhou X, Wen Y, Goodale UM, Zuo H, Zhu H, Li X, et al. Optimal rotation length for carbon sequestration in Eucalyptus plantations in subtropical China. New For. 2017;48:609-27. https://doi.org/10.1007/s11056-017-9588-2
- 34. Kumar P, Mishra A, Kumar M, Chaudhari S, Singh R, Singh K, et al. Biomass production and carbon sequestration of Eucalyptus tereticornis plantation in reclaimed sodic soils of north-west India. Indian J Agric Sci. 2019;89(7):1091-5. https://doi.org/10.56093/ijas.v89i7.91649
- 35. Guedes BS, Olsson BA, Egnell G, Sitoe AA, Karltun E. Plantations of Pinus and Eucalyptus replacing degraded mountain miombo woodlands in Mozambique significantly increase carbon sequestration. Glob Ecol Conserv. 2018;14:e00401. https://doi.org/10.1016/j.gecco.2018.e00401
- 36. Li X, Ye D, Liang H, Zhu H, Qin L, Zhu Y, et al. Effects of successive rotation regimes on carbon stocks in Eucalyptus plantations in subtropical China measured over a full rotation. PLoS One. 2015;10(7):e0132858. https://doi.org/10.1371/journal.pone.0132858
- 37. Hernández J, del Pino A, Vance ED, Califra Á, Del Giorgio F, Martínez L, et al. Eucalyptus and Pinus stand density effects on soil carbon sequestration. For Ecol Manage. 2016;368:28-38. https://doi.org/10.1016/j.foreco.2016.03.007
- 38. Pazhavand Z, Sadeghi H. Using fig and Eucalyptus for ecosystem restoration and management: good choices with carbon storage ability. Environ Sci Pollut Res. 2020;27:31615-22. https://doi.org/10.1007/s11356-020-09169-2
- 39. Rodrigues A, Pita G, Mateus J. Turbulent fluxes of carbon dioxide and water vapour over an Eucalyptus forest in Portugal. Silva Lusit. 2005;13(2):169-80.
- 40. Pereira JS, Mateus JA, Aires LM, Pita G, Pio C, David JS, et al. Effects of drought – altered seasonality and low rainfall – in net ecosystem carbon exchange of three contrasting Mediterranean ecosystems. Biogeosciences Discuss. 2007;4(5):791-802. https://doi.org/10.5194/bgd-4-1703-2007
- 41. Pita G, Rodrigues A, Mateus J, Pereira J. Reversing of seasonal patterns of carbon uptake in an Eucalyptus stand in Portugal after drought and felling. For Syst. 2011;20:475. https://doi.org/10.5424/fs/20112003-11082
- 42. Rockwood DL, Ellis MF, Fabbro KW. Economic potential for carbon sequestration by short rotation eucalypts using biochar in Florida, USA. Trees For People. 2022;7:100187. https://doi.org/10.1016/j.tfp.2021.100187
- 43. Chilton K, Campoe O, Allan N, Hinkle H. Increasing carbon sequestration, land-use efficiency, and building decarbonization with short rotation Eucalyptus. Sustainability. 2025;17:1281. https://doi.org/10.3390/su17031281
- 44. Resh SC, Binkley D, Parrotta JA. Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems. 2002;5(3):217-31. https://doi.org/10.1007/s10021-001-0067-3
- 45. Lal R. Soil carbon sequestration to mitigate climate change. Geoderma. 2004;123(1):1-22. https://doi.org/10.1016/j.geoderma.2004.01.032
- 46. Valadão M, Carneiro KM, Inkotte J, Ribeiro F, Miguel E, Gatto A. Litterfall, litter layer and leaf decomposition in Eucalyptus stands on Cerrado soils. Sci For. 2019;47. https://doi.org/10.18671/scifor.v47n122.08
- 47. Shoudho KN, Khan TH, Ara UR, Khan MR, Shawon ZBZ, Hoque ME. Biochar in global carbon cycle: towards sustainable development goals. Curr Res Green Sustain Chem. 2024;8:100409. https://doi.org/10.1016/j.crgsc.2024.100409
- 48. Kaewpradit W, Toomsan B. Impact of Eucalyptus biochar application to upland rice-sugarcane cropping systems on enzyme activities and nitrous oxide emissions of soil at sugarcane harvest under incubation experiment. J Plant Nutr. 2019;42(4):362-73. https://doi.org/10.1080/01904167.2018.1555849
- 49. Sandoval López DM, Arturi MF, Goya JF, Pérez CA, Frangi JL. Eucalyptus grandis plantations: effects of management on soil carbon, nutrient contents and yields. J For Res. 2020;31(2):601-11. https://doi.org/10.1007/s11676-018-0850-z
- 50. Zhang H, Duan H, Song M, Guan D. The dynamics of carbon accumulation in Eucalyptus and Acacia plantations in the Pearl River delta region. Ann For Sci. 2018;75(2):40. https://doi.org/10.1007/s13595-018-0717-7
- 51. Minhas PS, Yadav RK, Lal K, Chaturvedi RK. Effect of long-term irrigation with wastewater on growth, biomass production and water use by Eucalyptus tereticornis planted at variable stocking density. Agric Water Manag. 2015;152:151-60. https://doi.org/10.1016/j.agwat.2015.01.009
- 52. Kaul M, Mohren GMJ, Dadhwal VK. Carbon storage and sequestration potential of selected tree species in India. Mitig Adapt Strateg Glob Change. 2010;15(5):489-510. https://doi.org/10.1007/s11027-010-9230-5
- 53. Thumbar PD, Behera L, Gunaga R, Mehta A, Huse S, Dholariya C, et al. Eucalyptus based agroforestry systems for wood production and higher economic return. J Appl For Ecol. 2023;11:17-22.
- 54. Morales MM, Tonini H, Behling M, Hoshide AK. Eucalyptus carbon stock research in an integrated livestock-forestry system in Brazil. Sustainability. 2023;15(10):7750. https://doi.org/10.3390/su15107750
- 55. Pinheiro FM, Nair PKR, Nair VD, Tonucci RG, Venturin RP. Soil carbon stock and stability under Eucalyptus-based silvopasture and other land-use systems in the Cerrado biodiversity hotspot. J. Environ. Manag. 2021;299:113676. https://doi.org/10.1016/j.jenvman.2021.113676
- 56. Dagar JC, Lal K, Ram J, Kumar M, Chaudhari SK, Yadav RK, et al. Eucalyptus geometry in agroforestry on waterlogged saline soils influences plant and soil traits in North-West India. Agric Ecosyst Environ. 2016;233:33-42. https://doi.org/10.1016/j.agee.2016.08.025
- 57. Hammad HM, Fasihuddin Nauman HM, Abbas F, Ahmad A, Bakhat HF, Saeed S, et al. Carbon sequestration potential and soil characteristics of various land use systems in arid region. J Environ Manag. 2020;264:110254. https://doi.org/10.1016/j.jenvman.2020.110254
- 58. Dhyani SK, Ram A, Dev I. Potential of agroforestry systems in carbon sequestration in India. Indian J Agric Sci. 2016;86(9):1103-12. https://doi.org/10.56093/ijas.v86i9.61348
- 59. Ramesh KR, Deshmukh HK, Sivakumar K, Guleria V, Umedsinh RD, Krishnakumar N, et al. Influence of Eucalyptus agroforestry on crop yields, soil properties, and system economics in southern regions of India. Sustainability. 2023;15(4):3797. https://doi.org/10.3390/su15043797
- 60. Gupta RK, Kumar V, Sharma K, Buttar TS, Singh G, Mir G. Carbon sequestration potential through agroforestry: A review. Int J Curr Microbiol Appl Sci. 2017;6(8):211-20. https://doi.org/10.20546/ijcmas.2017.608.029
- 61. Rahman S, Jama Ali A, Raihan A. Soil carbon sequestration in agroforestry systems as a mitigation strategy of climate change: A case study from Dinajpur, Bangladesh. Adv Environ Eng Res. 2022;3(4):056. https://doi.org/10.21926/aeer.2204056
- 62. Rahangdale C, Pathak N. Dynamics of organic carbon stock in soil under agroforestry system. Trends Biosci. 2016;9(11):662-7.
- 63. Rahangdale C, Koshta L. Biomass production and carbon sequestration potential under different land use system in Jabalpur District of Madhya Pradesh. Adv Life Sci. 2016;21:9638-42.
- 64. Kumar P, Mishra A, Chaudhari S, Basak N, Rai P, Singh K, et al. Carbon pools and nutrient dynamics under Eucalyptus-based agroforestry system in semi-arid region of north-west India. J Indian Soc Soil Sci. 2018;66(2):188-99. https://doi.org/10.5958/0974-0228.2018.00024.5
- 65. Murthy KI, Gupta M, Tomar S, Munsi M, Tiwari R. Carbon sequestration potential of agroforestry systems in India. J Earth Sci Clim Change. 2013;131:1-7. https://doi.org/10.4172/2157-7617.1000131
- 66. Singh J, Baljit S, Sharma S. Comparison of soil carbon and nitrogen pools among poplar and eucalyptus based agroforestry systems in Punjab, India. Carbon Manag. 2021;12(6):693-708. https://doi.org/10.1080/17583004.2021.2011787
- 67. Sureshbhai PJ, Thakur N, Jha S, Kumar V. Productivity and carbon sequestration under prevalent agroforestry systems in Navsari District, Gujarat, India. Int J Curr Microbiol Appl Sci. 2017;6(9):3405-22. https://doi.org/10.20546/ijcmas.2017.609.419
- 68. Yadava A. Carbon sequestration: underexploited environmental benefits of Tarai agroforestry systems. Indian J Soil Conserv. 2010;38(2):125-31.
- 69. Singh A, Jain KK, Upadyaya SD. Carbon dioxide equivalent carbon stock under wheat and Eucalyptus based agroforestry system in Central India. Int J Plant Soil Sci. 2023;35(21):204-11. https://doi.org/10.9734/ijpss/2023/v35i213965
- 70. Chaudhari SK, Kumar P, Mishra AK, Singh K, Rail P, Singh R, et al. Labile carbon fractions build-up and dynamics under vertical stratification of Populus deltoides and Eucalyptus tereticornis based agroforestry systems in Trans-Gangetic Plains of India. Ann Agric Res. 2016;36(1):1-9.
- 71. Kanime N, Kaushal R, Tewari SK, Raverkar KP, Chaturvedi S, Chaturvedi OP. Biomass production and carbon sequestration in different tree-based systems of Central Himalayan Tarai region. For Trees Livelihoods. 2013;22(1):38-50. https://doi.org/10.1080/14728028.2013.764073
- 72. Pratibha S, Anil Kumar S, Uma M. Profitable tree-based model for carbon stock and CO2 mitigation potential: A competitive deep plough of wheat-poplar and eucalyptus-poplar agroforestry systems in Tarai region of Uttarakhand. Indian J Agrofor. 2023;25(1).
- 73. Weng Z, Van Zwieten L, Tavakkoli E, Rose MT, Singh BP, Joseph S, et al. Microspectroscopic visualization of how biochar lifts the soil organic carbon ceiling. Nat Commun. 2022;13(1):5177. https://doi.org/10.1038/s41467-022-32819-7
- 74. Peixoto L, Elsgaard L, Rasmussen J, Kuzyakov Y, Banfield CC, Dippold MA, et al. Decreased rhizodeposition, but increased microbial carbon stabilization with soil depth down to 3.6 m. Soil Biol Biochem. 2020;150:108008. https://doi.org/10.1016/j.soilbio.2020.108008
- 75. Hawkins H-J, Cargill RIM, Van Nuland ME, Hagen SC, Field KJ, Sheldrake M, et al. Mycorrhizal mycelium as a global carbon pool. Curr Biol. 2023;33(11):R560-73. https://doi.org/10.1016/j.cub.2023.02.027
- 76. Lehmann J, Joseph S. Biochar for environmental management: An introduction. In: Lehmann J, Joseph S, editors. Biochar for environmental management. Science and technology. London: Earthscan Publishers Ltd; 2009.
- 77. Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S. Sustainable biochar to mitigate global climate change. Nat Commun. 2010;1(1):56. https://doi.org/10.1038/ncomms1053
- 78. Müller C, Hodecker B, Barros N, Merchant A. A physiological approach for pre-selection of Eucalyptus clones resistant to drought. iForest. 2020;13:16-23. https://doi.org/10.3832/ifor3185-012
- 79. Haryono H. Innovative business models for carbon trading: integration of AI, satellite, and blockchain in REDD+ scheme in BTS protected forest area. West Sci Soc Hum Stud. 2025;3:293-302. https://doi.org/10.58812/wsshs.v3i02.1720
- 80. Zhang W, Shao H, Sun H, Zhang W, Yan Q. Optimizing carbon sequestration in forest management plans using advanced algorithms: a Case study of greater khingan mountains. Forests. 2023;14(9):1785. https://doi.org/10.3390/f14091785
- 81. Schwerz F, Neto DD, Caron BO, Tibolla LB, Sgarbossa J, Eloy E, et al. Carbon stocks, partitioning, and wood composition in short-rotation forestry system under reduced planting spacing. Ann For Sci. 2020;77(3):67. https://doi.org/10.1007/s13595-020-00974-w
- 82. Chavan SB, Dhillon RS, Sirohi C, Saleh IA, Uthappa R, Keerthika A, et al. Optimizing planting geometries in eucalyptus-based food production systems for enhanced yield and carbon sequestration. Front Sustain Food Syst. 2024;8. https://doi.org/10.3389/fsufs.2024.1386035
- 83. Ribeiro SC, Soares CPB, Fehrmann L, Jacovine LAG, von Gadow K. Aboveground and belowground biomass and carbon estimates for clonal Eucalyptus trees in Southeast Brazil. Rev Árvore. 2015;39:353-63. https://doi.org/10.1590/0100-67622015000200015
- 84. Sadono R, Wardhana W, Wirabuana P, Idris F. Productivity evaluation of Eucalyptus urophylla plantation established in dryland ecosystems, East Nusa Tenggara. J Degrad Min Lands Manag. 2020;8:2461-9. https://doi.org/10.15243/jdmlm.2020.081.2461
- 85. Nagar B, Rawat S, Rathiesh P, Sekar I. Impact of initial spacing on growth and yield of Eucalyptus camaldulensis in arid region of India. World Appl Sci J. 2015;33:1362-8. https://doi.org/10.5829/idosi.wasj.2015.33.08.247
- 86. Resquin F, Navarro-Cerrillo R, Carrasco-Letelier L, Rachid-Casnati A. Influence of contrasting stocking densities on the dynamics of above-ground biomass and wood density of Eucalyptus benthamii, Eucalyptus dunnii, and Eucalyptus grandis for bioenergy in Uruguay. For Ecol Manage. 2019;438:63. https://doi.org/10.1016/j.foreco.2019.02.007
- 87. Medeiros P, Silva G, Oliveira E, Ribeiro C, Silva J, Pimenta A. Efficiency of nutrient use for biomass production of a Eucalyptus clone as a function of planting density in short-rotation cropping. Aust For. 2020;83(2):66-74. https://doi.org/10.1080/00049158.2020.1774958
- 88. Ma W, Tang S, Dengzeng Z, Zhang D, Zhang T, Ma X. Root exudates contribute to belowground ecosystem hotspots: A review. Front Microbiol. 2022;13. https://doi.org/10.3389/fmicb.2022.937940
- 89. Wang Y, Zheng J, Boyd S, Xu Z, Zhou Q. Effects of litter quality and quantity on chemical changes during eucalyptus litter decomposition in subtropical Australia. Plant Soil. 2019;442:65-78. https://doi.org/10.1007/s11104-019-04162-2
- 90. Castaneda-Gomez L, Powell J, Ellsworth D, Pendall E, Carrillo Y. The influence of roots on mycorrhizal fungi, saprotrophic microbes and carbon dynamics in a low-phosphorus Eucalyptus forest under elevated CO2. Funct Ecol. 2021;35: 2056-71. https://doi.org/10.1111/1365-2435.13832
- 91. da Silva CG, Passos RR, Santos DA, Mendonça EdS, Machado LC. CO2 emission in soil under Eucalyptus cultivation with biochar application. Pesqui Agropecu Trop. 2024;54:e80082. https://doi.org/10.1590/1983-40632024v5480082
- 92. Mncedi S, Görgens J, Swanepoel P, Hardie A. Effects of eucalypt and black wattle biochars from vacuum pyrolysis on sandy soil quality and cauliflower yield. S Afr J Plant Soil. 2024;41(4-5):110-22. https://doi.org/10.1080/02571862.2024.2425639
Downloads
Download data is not yet available.