Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Insecticidal longevity and resistance trends in cauliflower pests: A survival analysis approach

DOI
https://doi.org/10.14719/pst.8642
Submitted
3 April 2025
Published
07-07-2025 — Updated on 14-07-2025
Versions

Abstract

Survival analysis is widely used to evaluate the effectiveness of insecticide trials on insect survival, which can also be used to estimate the durability of insecticides. This study focuses on the major pests of cauliflower that are capable of causing significant damage. Depending on the pest species and their population density, these infestations can lead to yield losses of up to 100 %. Major pest species in cauliflower are generally assumed to develop resistance more rapidly than minor pests. However, few studies have systematically analyzed published resistance data to compare resistance development among different species. Using 412 records from the Arthropod Pesticide Resistance Database covering 16 species, this study applied survival analysis to estimate the number of generations required for resistance to emerge following insecticide introduction. The results revealed significant variation among species in resistance development rates. On average, resistance first appeared after 178 generations in tropical regions and 56.5 generations in temperate regions. Insecticide durability also varied by Mode of Action (MoA) and year of introduction. On average, insecticides remained effective for 184.6 generations in tropical regions and 54.73 generations in temperate regions. For Diamondback moth control, estimated longevity in tropical regions was 7 years for Diamides, 8.5 years for Spinosyns and 12.9 years for Milbemycins. In temperate regions, effectiveness was estimated at 7 years for Diamides, 9.75 years for Spinosyns and 18.75 years for Milbemycins. Unlike traditional methods that depend on periodic field surveys or lab tests, survival analysis uses time-based data, including censored information, to give more reliable and consistent estimates of how quickly resistance develops and how long insecticides remain effective across different pests and modes of action.

References

  1. 1. Sharma S, Singh P, Chable V, Tripathi SK. A review of hybrid cauliflower development. J New Seeds. 2005;6:151-93. https://doi.org/10.1300/J153v06n02_08
  2. 2. Nazeer S, Razaq M, Bibi F, Arshad AU, Ali H, Afzal Z, et al. Efficacy of the Plant growth promoting Rhizobacterium and Lufenuron for reducing insect-associated yield losses in cauliflower. Sch J Agric Vet Sci. 2025;12(01):48-59. https://doi.org/10.36347/sjavs.2025.v12i01.004
  3. 3. Pradhan BK, Pandey S, Dhital M. Growth, yield, and yield-related response of mid-season cauliflower varieties due to different B levels in Chitwan, Nepal. J Agric Food Res. 2024;16:101187. https://doi.org/10.1016/j.jafr.2024.101187
  4. 4. Singh B, Singh N, Singh AU, Papnai G, Singh RP, Sudhakar S. Studies on seasonal incidence of insect pests on cauliflower (Brassica oleracea var. Botrytis L.) crop. Plant Arch. 2024;24:50-4. https://doi.org/10.51470/PLANTARCHIVES.2024.v24.SP-GABELS.008
  5. 5. Paudel A, Yadav PK, Karna P. Diamondback Moth Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae); a real menace to crucifers and its integrated management tactics. Turk J Agric - Food Sci Technol. 2022;10(12):2504-15. https://doi.org/10.24925/turjaf.v10i12.2504-2515.5231
  6. 6. Hanamasagar Y, Ramesha NM, Mahapatra S, Panigrahi CK, Vidhya CS, Agnihotri N, et al. Advancing RNAi for sustainable insect management: targeted solutions for eco-friendly pest control. J Exp Agric Int. 2024;46(6):740-75. https://doi.org/10.9734/jeai/2024/v46i62531
  7. 7. Sumerford DV, Head GP, Shelton A, Greenplate J, Moar W. Field-evolved resistance: assessing the problem and ways to move forward. J Econ Entomol. 2013;106(4):1525-34. https://doi.org/10.1603/EC13103
  8. 8. Kientega M, Clarkson CS, Traoré N, Hui TYJ, O’Loughlin S, Millogo AA, et al. Whole-genome sequencing of major malaria vectors reveals the evolution of new insecticide resistance variants in a longitudinal study in Burkina Faso. Malar J. 2024;23(1):280. https://doi.org/10.1186/s12936-024-05106-7
  9. 9. Amezian D, Nauen R, Le Goff G. Comparative analysis of the detoxification gene inventory of four major Spodoptera pest species in response to xenobiotics. Insect Biochem Mol Biol. 2021;138:103646. https://doi.org/10.1016/j.ibmb.2021.103646
  10. 10. Sarangi S. Detoxification enzymes: antagonistic force encountering the insecticides. 2024;3(7).
  11. 11. Gould F. Role of behavior in the evolution of insect adaptation to insecticides and resistant host plants. Bull Entomol Soc Am. 1984;30(4):34-41. https://doi.org/10.1093/besa/30.4.34
  12. 12. Kunkel BA, Held DW, Potter DA. Lethal and sublethal effects of Bendiocarb, Halofenozide, and Imidacloprid on Harpalus pennsylvanicus (Coleoptera: Carabidae) following different modes of exposure in Turfgrass. J Econ Entomol. 2001;94(1):60-7. https://doi.org/10.1603/0022-0493-94.1.60
  13. 13. Brevik K, Schoville SD, Mota-Sanchez D, Chen YH. Pesticide durability and the evolution of resistance: A novel application of survival analysis. Pest Manag Sci. 2018;74(8):1953-63. https://doi.org/10.1002/ps.4899
  14. 14. Cortese G, Santoiemma G. Cox proportional-hazards model: evaluation of Popillia japonica survival after insecticide treatments; 2021/2022.
  15. 15. Goel M, Khanna P, Kishore J. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res. 2010;1(4):274. https://doi.org/10.4103/0974-7788.76794
  16. 16. Koletsi D, Pandis N. Survival analysis, part 2: Kaplan-Meier method and the log-rank test. Am J Orthod Dentofacial Orthop. 2017;152(4):569-71. https://doi.org/10.1016/j.ajodo.2017.07.008
  17. 17. Manir SB, Deshpande P. Critical risk assessment, diagnosis, and survival analysis of breast cancer. Diagnostics. 2024;14(10):984. https://doi.org/10.3390/diagnostics14100984
  18. 18. Jeri-Yabar A, Vittini-Hernandez L, Prado-Nuñez S, Dharmapuri S. Survival analysis of metastatic early-onset colorectal cancer compared to metastatic average-onset colorectal cancer: a SEER database analysis. Cancers. 2024;16(11):2004. https://doi.org/10.3390/cancers16112004
  19. 19. Maiorano MFP, Cormio G, Maiorano BA, Loizzi V. Uterine carcinosarcoma (UCS): a literature review and survival analysis from a retrospective cohort study. Cancers. 2024;16(23):3905. https://doi.org/10.3390/cancers16233905
  20. 20. D’Alonzo M, Brunelli F, Seddio F, Papesso FJ, Petruccelli RD, Di Cosola R, et al. Heart transplantation following fontan failure: long-term survival analysis. J Clin Med. 2024;13(10):2960. https://doi.org/10.3390/jcm13102960
  21. 21. Keirsebelik MSG, David MR, Pavan MG, Couto-Lima D, Palomino M, Rahman RU, et al. Dengue virus serotype 1. Effects on mosquito survival differ among geographically distinct Aedes aegypti populations. Insects. 2024;15(6):393. https://doi.org/10.3390/insects15060393
  22. 22. Martins Filho S, Duarte ML, Venzon M. Survival analysis of the green lacewing, Chrysoperla externa (Hagen) exposed to neem-based products. Agriculture. 2023;13(2):292. https://doi.org/10.3390/agriculture13020292
  23. 23. Zhang H, Xu D, Deng X, Liu Z, He Z, Wu J, et al. Impact of temperature variation on the biological traits and lifecycle of Spodoptera exigua (Lepidoptera: Noctuidae): a meta-analysis approach. Insects. 2025;16(2):155. https://doi.org/10.3390/insects16020155
  24. 24. Shi R, Hao J, Zhang Y, Wang Q, Liu C, Yang Q. Impact of different temperatures on activity of the pest Monolepta hieroglyphica Motschulsky (Coleoptera: Chrysomelidae). Insects. 2025;16(2):222. https://doi.org/10.3390/insects16020222
  25. 25. Lisi F, Cavallaro C, Pitruzzello MF, Arnó J, Desneux N, Han P, et al. Compatibility of bioinsecticides with parasitoids for enhanced integrated pest management of Drosophila suzukii and Tuta absoluta. Insects. 2024;15(7):467. https://doi.org/10.3390/insects15070467
  26. 26. Malabusini S, Lupi D. Exploring the biology of quasi-social idiobiont parasitoids in the genus Sclerodermus (Hymenoptera: Bethylidae). Insects. 2024;15(11):880. https://doi.org/10.3390/insects15110880
  27. 27. Borges I, Dury GJ, Soares AO. Population growth parameters of Scymnus nubilus fed single-aphid diets of Aphis fabae or Myzus persicae. Insects. 2024;15(7):486. https://doi.org/10.3390/insects15070486
  28. 28. Wang Y, Chang Y, Gong W, Du Y. Life table study of Liriomyza trifolii and its contribution to thermotolerance: responding to long-term selection pressure for abamectin resistance. Insects. 2024;15(6):462. https://doi.org/10.3390/insects15060462
  29. 29. Barraza-Contreras JM, Piña-Monarrez MR, Hernández-Ramos MM, Monclova-Quintana O, Ramos-Lozano S. Acceleration of service life testing by using weibull distribution on fiber optical connectors. Appl Sci. 2024;14(14):6198. https://doi.org/10.3390/app14146198
  30. 30. Balatsos G, Blanco-Sierra L, Karras V, Puggioli A, Osório HC, Bellini R, et al. Residual longevity of recaptured sterile mosquitoes as a tool to understand field performance and reveal quality. Insects. 2024;15(11):826. https://doi.org/10.3390/insects15110826
  31. 31. Arthropod Pesticide Resistance Database. Michigan State University [Internet]. [cited 2025 Apr 1]. https://www.pesticideresistance.org/
  32. 32. PPDB - Pesticides Properties DataBase [Internet]. [cited 2025 Apr 1]. http://sitem.herts.ac.uk/aeru/ppdb/
  33. 33. Insecticide Resistance Action Committee [Internet]. [cited 2025 Apr 1]. Insecticide Resistance Action Committee. IRAC; 2025. https://irac-online.org/
  34. 34. Ting-Kui Q, Gullan PJ, Beattie GAC, Trueman JWH, Cranston PS, Fletcher MJ, et al. The current distribution and geographical origin of the scale insect pest Ceroplastes sinensis (Hemiptera: Coccidae). Bull Entomol Res. 1994;84(4):541–9. https://doi.org/10.1017/S000748530003279X
  35. 35. Kiewnick S, Holterman M, van den Elsen S, van Megen H, Frey JE, Helder J. Comparison of two short DNA barcoding loci (COI and COII) and two longer ribosomal DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp.) and their close relatives. Eur J Plant Pathol. 2014;140(1):97-110. https://doi.org/10.1007/s10658-014-0446-1
  36. 36. Vosman B, Van’T Westende WPC, Henken B, Van Eekelen HDLM, De Vos RCH, Voorrips RE. Broad spectrum insect resistance and metabolites in close relatives of the cultivated tomato. Euphytica. 2018;214(3):46. https://doi.org/10.1007/s10681-018-2124-4
  37. 37. Philips CR, Fu Z, Kuhar TP, Shelton AM, Cordero RJ. Natural history, ecology, and management of Diamondback Moth (Lepidoptera: Plutellidae), with emphasis on the United States. J Integr Pest Manag. 2014;5(3):D1-11. https://doi.org/10.1603/IPM14012
  38. 38. Chen L, Li S, Zhou Y, Zhou X, Jiang H, Liu X, et al. Risk assessment for pesticide mixtures on aquatic ecosystems in China: a proposed framework. Pest Manag Sci. 2020;76(2):444-53. https://doi.org/10.1002/ps.5529
  39. 39. Menger F, Boström G, Jonsson O, Ahrens L, Wiberg K, Kreuger J, et al. Identification of pesticide transformation products in surface water using suspect screening combined with national monitoring data. Environ Sci Technol. 2021;55(15):10343-53. https://doi.org/10.1021/acs.est.1c00466
  40. 40. Lira RPC, Antunes-Foschini R, Rocha EM. Survival analysis (Kaplan-Meier curves): a method to predict the future. Arq Bras Oftalmol. 2020;83(2). https://doi.org/10.5935/0004-2749.20200036
  41. 41. Lin B, Ma H, Ma M, Zhang Z, Sun Z, Hsieh I-y, et al. The incidence and survival analysis for anaplastic thyroid cancer: a SEER database analysis. Am J Transl Res. 2019;11(9):5888-96.
  42. 42. Schober P, Vetter TR. Kaplan-Meier curves, log-rank tests, and Cox regression for time-to-event data. Anesth Analg. 2021;132(4):969-70. https://doi.org/10.1213/ANE.0000000000005358
  43. 43. Nega A. Climate change impacts on agriculture: a review of plant diseases and insect pests in Ethiopia and East Africa, with adaptation and mitigation strategies. Adv Agric. 2025;2025(1):5606701. https://doi.org/10.1155/aia/5606701
  44. 44. Patel AK, Joshi D, Khan A, Jaisval GK, Kumar A, Pathania R, et al. Biology, diversity, distribution, and characterization of Brevicoryne brassicae (L.) Cabbage. Int J Plant Soil Sci. 2024;36(3):336-47. https://doi.org/10.9734/ijpss/2024/v36i34431
  45. 45. Thakur N, Sharma A, Kaur S, Ahluwalia KK, Sidhu AK, Kumar S, et al. Insect pest Spodoptera litura (Fabricius) and its resistance against the chemical insecticides: A review. Plant Sci Today. 2024;11(4). https://doi.org/10.14719/pst.3078
  46. 46. Mozuraitis R, Hambäck P, Borg-Karlson AK, Hopkins RJ. Variation in odour profiles of cauliflower, curly kale and broccoli (Brassica oleracea L.) cultivars is affected more by genotype rather than herbivore feeding. Plants. 2025;14(7):1014. https://doi.org/10.3390/plants14071014
  47. 47. Campos H, Ortiz O, editors. The potato crop: its agricultural, nutritional and social contribution to humankind. Cham: Springer International Publishing; 2020. https://doi.org/10.1007/978-3-030-28683-5
  48. 48. Van Dijk LJA, Fisher BL, Miraldo A, Goodsell RM, Iwaszkiewicz-Eggebrecht E, Raharinjanahary D, et al. Temperature and water availability drive insect seasonality across a temperate and a tropical region. Proc R Soc B Biol Sci. 2024;291(2025):20240090. https://doi.org/10.1098/rspb.2024.0090

Downloads

Download data is not yet available.