Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Line × Tester analysis for sustainable yield and dry fodder contributing traits in pearl millet (Pennisetum glaucum (L.) R. Br.) under rainfed conditions

DOI
https://doi.org/10.14719/pst.8704
Submitted
6 April 2025
Published
26-07-2025 — Updated on 06-08-2025
Versions

Abstract

Selection of parents to maximize hybrid performance requires a clear understanding of the combining ability. 101 ICRISAT bred B-lines and two R-line testers were crossed using a line × tester design to develop 202 F1 hybrids and evaluated at four locations in an alpha-lattice design. The environments, hybrids and variance partitions due to lines, testers and their interaction (lines × testers) were found significant. Contribution of lines to the combining ability variance was very high for days to 50 % flowering (DF) (84.3 %), plant height (PH) (71.9 %), panicle girth (PG) (89.8 %), blast severity score (BS) (59.4 %), panicle yield (PY) (64 %), grain yield (GY) (61.8 %) and dry fodder yield (FY) (65.2 %). High percentage contribution of line × tester for panicle yield plot-1 (32.6), threshing percentage (43), grain yield (38.1), fodder yield (34.8) and blast score (28) revealed an interplay of additive and non-additive gene action in their inheritance, thereby emphasizing the potential for pedigree breeding in combination with harvesting the heterotic potential of crop for these traits. Several seed- parents were identified as good general combiners for DF (ICMB 88004, ICMB 04222), PH (ICMB 08888), PL (ICMB 09333, ICMB 09555) and GY (ICMB 93222, ICMB 94444, ICMB 07666). Inbreds ICMB 08666, ICMB 08888 and ICMB 09333 were identified good for biomass production. Hybrids like ICPH021, ICPH023, ICPH107, ICPH175, ICPH007 and ICPH083 were identified as top performing hybrids for different segments and agro-ecological zones. Grain and fodder yield showed a significant and positive correlation with GCA and SCA suggesting that combining ability estimates are reliable predictors of hybrid performance, aiding in the effective exploitation of heterosis.

References

  1. 1. Saleh ASM, Zhang Q, Chen J, Shen Q. Millet grains: nutritional quality, processing and potential health benefits. Compr Rev Food Sci Food Saf. 2013;12(3):281–95. https://doi.org/10.1111/1541-4337.12012
  2. 2. Nambiar VS, Dhaduk JJ, Sareen N, Shahu T, Desai R. Potential functional implications of pearl millet (Pennisetum glaucum) in health and disease. J Appl Pharm Sci. 2011;1(10):62–7. https://www.japsonline.com/admin/php/uploads/299_pdf.pdf
  3. 3. Vadez V, Hash T, Bidinger FR, Kholova J. Phenotyping pearl millet for adaptation to drought. Front Physiol. 2012;3:386. https://doi.org/10.3389/fphys.2012.00386
  4. 4. Rai KN, Yadav OP, Rajpurohit BS, Patil HT, Govindaraj M, Khairwal IS, et al. Breeding pearl millet cultivars for high iron density with zinc density as an associated trait. J SAT Agric Res. 2013;11:1–7. https://oar.icrisat.org/7291/1/JSATAgriRes_Dec_v11_MBreedingPearlMillet_2013.pdf
  5. 5. Yadav OP, Rai KN. Genetic improvement of pearl millet in India. Agric Res. 2013;2(4):275–92. https://doi.org/10.1007/s40003-013-0089-z
  6. 6. Liang Z, Gupta SK, Yeh CT, Zhang Y, Ngu DW, Kumar R, et al. Phenotypic data from inbred parents can improve genomic prediction in pearl millet hybrids. G3 Genes Genomes Genet. 2018;8(7):2513–22. https://doi.org/10.1534/g3.118.200242
  7. 7. Velazco JG, Jordan DR, Mace ES, Hunt CH, Malosetti M, Van Eeuwijk FA. Genomic prediction of grain yield and drought-adaptation capacity in sorghum is enhanced by multi-trait analysis. Front Plant Sci. 2019;10:997. https://doi.org/10.3389/fpls.2019.00997
  8. 8. Singh F, Singh RK, Singh VP. Combining ability studies in pearl millet (Pennisetum typhoides (Burm.) S. & H.). Theor Appl Genet. 1974;44(3):106–10. https://doi.org/10.1007/bf02981921
  9. 9. Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed. Harlow (UK): Longman; 1996.
  10. 10. Pucher A, Sy O, Sanogo MD, Angarawai II, Zangre R, Ouedraogo M, et al. Combining ability patterns among West African pearl millet landraces and prospects for pearl millet hybrid breeding. Field Crop Res. 2016;195:9–20. https://doi.org/10.1016/j.fcr.2016.04.035
  11. 11. Kempthorne O. An introduction to genetic statistics. New York: Wiley; 1957. https://doi.org/10.1126/science.127.3303.869.c
  12. 12. Manga VK. Using diallel and line × tester mating systems for identifying parents and potential hybrids of pearl millet. Diversification of Arid Farming Systems. 2009:243.
  13. 13. Govindaraj M, Rai KN, Shanmugasundaram P, Dwivedi SL, Sahrawat KL, Muthaiah AR, et al. Combining ability and heterosis for grain iron and zinc densities in pearl millet. Crop Sci. 2013;53(2):507–17. https://doi.org/10.2135/cropsci2012.08.0477
  14. 14. Parmar RS, Vala GS, Gohil VN, Dudhat AS. Studies on combining ability for development of new hybrids in pearl millet (Pennisetum glaucum (L.) R. Br.). Int J Plant Sci. 2013;8(2):405–9.
  15. 15. Chaudhary VP, Dhedhi KK, Joshi HJ, Mehta DR. Combining ability studies in line × tester crosses of pearl millet (Pennisetum glaucum (L.) R. Br.). Res Crops. 2012;13(3):1094–7. https://www.cabdirect.org/cabdirect/abstract/20133051178
  16. 16. Kanfany G, Fofana A, Tongoona P, Danquah A, Offei S, Danquah E, et al. Estimates of combining ability and heterosis for yield and its related traits in pearl millet inbred lines under downy mildew prevalent areas of Senegal. Int J Agron. 2018;2018:3439090. https://doi.org/10.1155/2018/3439090
  17. 17. Drabo I. Breeding pearl millet (Pennisetum glaucum (L.) R. Br.) for downy mildew resistance and improved yield in Burkina Faso [PhD thesis]. University of Ghana; 2016. https://wacci.ug.edu.gh/node/382
  18. 18. Nduwumuremyi A, Tongoona P, Habimana S. Mating designs: helpful tool for quantitative plant breeding analysis. J Plant Breed Genet. 2013;1(3):117–29.
  19. 19. Panhwar SA, Baloch MJ, Jatoi WA, Veesar NF, Majeedano MS. Combining ability estimates from line × tester mating design in upland cotton. Pak Acad Sci. 2008;45:69–74. https://paspk.org/wp-content/uploads/proceedings/45 %20No. %202/88da23c9proc45-2-3.pdf
  20. 20. Thakur RP, Sharma R, Rai KN, Gupta SK, Rao VP. Screening techniques and resistance sources for foliar blast in pearl millet. J SAT Agric Res. 2009;7:1–5.
  21. 21. Clarke RT. Residual maximum likelihood (REML) methods for analysing hydrological data series. J Hydrol. 1996;182(1-4):277–95.
  22. 22. Govindaraj M, Selvi B, Rajarathinam S, Sumathi P. Genetic variability and heritability of grain yield components and grain mineral concentration in India's pearl millet (Pennisetum glaucum (L.) R. Br.) accessions. Afr J Food Agric Nutr Dev. 2011;11(3). https://www.ajol.info/index.php/ajfand/article/view/66627
  23. 23. Athoni BK, Boodi IH, Guggari AK. Combining ability and heterosis for grain yield and its components in pearl millet (Pennisetum glaucum (L.) R. Br.). Int J Sci Nat. 2016;7(4):786–94.
  24. 24. Solanki KL. Combining ability, heterosis and character association analysis in pearl millet (Pennisetum glaucum (L.) R. Br.) under arid condition [PhD thesis]. Swami Keshwanand Rajasthan Agricultural University, Bikaner, India; 2017.
  25. 25. Yadav HP, Sabharwal PS, Beniwal CR. Combining ability study for some newly developed male sterile lines for forage attributes in pearl millet. Forage Res. 2002;27(4):277–80. https://www.cabidigitallibrary.org/doi/full/10.5555/2003318298
  26. 26. Rathore VS, Singhania DL, Jakhar ML. Combining ability of diverse restorers of pearl millet (Pennisetum glaucum (L.) R. Br.) for grain yield and its components. Indian J Genet. 2004;64(3):239–40.
  27. 27. Patel KY, Kulkarni GU, Patel DR. Heterosis and combining ability studies for grain yield and its components in pearl millet. J Maharashtra Agric Univ. 2008;33(1):12–5.
  28. 28. Lakshmana D, Surendra P, Gurumurthy R. Combining ability studies in pearl millet. Res Crops. 2003;4(3):358–62.
  29. 29. Patil CM, Aher RP, Anarase SA, Suryawanshi NV. Combining ability analysis for grain yield and its components in pearl millet. J Maharashtra Agric Univ. 2005;30(3):330–2.
  30. 30. Serba DD, Perumal R, Tesso TT, Min D. Status of global pearl millet breeding programs and the way forward. Crop Sci. 2017;57(6):2891–905. https://doi.org/10.2135/cropsci2016.11.0936
  31. 31. Van Oosterom EJ, Weltzien E, Yadav OP, Bidinger FR. Grain yield components of pearl millet under optimum conditions can be used to identify germplasm with adaptation to arid zones. Field Crops Res. 2006;96(2–3):407–21. https://doi.org/10.1016/j.fcr.2005.08.008
  32. 32. Van Oosterom EJ, Bidinger FR, Weltzien ER. A yield architecture framework to explain adaptation of pearl millet to environmental stress. Field Crops Res. 2003;80(1):33–56. https://doi.org/10.1016/S0378-4290(02)00153-3
  33. 33. Yadav OP, Khairwal IS. Progress towards developing dual-purpose cultivars of pearl millet (Pennisetum glaucum (L.) R. Br.) in India. Indian J Agric Sci. 2007;77(10):645–8. https://epubs.icar.org.in/index.php/IJAgS/article/view/3431
  34. 34. Gupta SK, Sharma R, Rai KN, Thakur RP. Inheritance of foliar blast resistance in pearl millet (Pennisetum glaucum (L.) R. Br.). Plant Breed. 2012;131(1):217–9. http://doi.org/10.1111/j.1439-0523.2011.01929.x
  35. 35. Surendhar A, Iyanar K, Ravikesavan R, Ravichandran V. Combining ability analysis in pearl millet (Pennisetum glaucum (L.) R. Br.) for yield and yield contributing traits. Electron J Plant Breed. 2023;14(2):584–90. https://doi.org/10.37992/2023.1402.070
  36. 36. Aruna C, Rao BD, Tonapi VA, Rao TN. Improving production and utilization of sorghum in Asia. In: Rooney W, editor. Achieving sustainable cultivation of sorghum. vol 2, Sorghum utilisation around the world. Cambridge (UK): Burleigh Dodds Science Publishing. 2018:209–32. https://doi.org/10.1201/9781351114394-13
  37. 37. Singh B, Rana DS, Joshi UN, Dhaka AK. Fodder yield and quality of pearl millet genotypes as influenced by nitrogen levels. Forage Res. 2012;38(1):62–3. https://forageresearch.in/wp-content/uploads/2013/07/62-63.pdf
  38. 38. Jeeterwal RC, Sharma LD, Anju N. Combining ability studies through diallel analysis in pearl millet (Pennisetum glaucum (L.) R. Br.) under varying environmental conditions. J Pharmacogn Phytochem. 2017;6(4):1083–8.
  39. 39. Sudarshan Patil K, Gupta SK, Dangi KS, Shashibhushan D, Balram M, Ramesh T. Panicle traits and plant height are important selection indices to enhance productivity in pearl millet (Pennisetum glaucum (L.) R. Br.) populations. Int J Curr Microbiol Appl Sci. 2018;7(12):306–12. https://doi.org/10.20546/ijcmas.2018.712.037
  40. 40. Gajjar KD, Patel MS, Zala HN, Prajapati NN, Patel YN. Towards superior pearl millet (Pennisetum glaucum (L.) R. Br.) varieties: unraveling combining ability and heterosis for improved grain yield. Biol Forum Int J. 2023;15(11):339–48.
  41. 41. Dutta S, Sattler FT, Pucher A, Drabo I, Issaka A, Sy O, et al. Heterosis and combining abilities in a diverse seven-parent pearl millet population diallel tested in West Africa. Euphytica. 2021;217:1–20. https://doi.org/10.1007/s10681-021-02939-0
  42. 42. Somegowda VK, Vemula A, Naravula J, Prasad G, Rayaprolu L, Rathore A, et al. Evaluation of fodder yield and fodder quality in sorghum and its interaction with grain yield under different water availability regimes. Curr Plant Biol. 2021;25:100191. https://doi.org/10.1016/j.cpb.2020.100191
  43. 43. Liu Z, Jiang J, Ren A, Xu X, Zhang H, Zhao T, et al. Heterosis and combining ability analysis of fruit yield, early maturity and quality in tomato. Agronomy. 2021;11(4):807. https://www.mdpi.com/2073-4395/11/4/807

Downloads

Download data is not yet available.