Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Assessment of populations of Lagochilus vvedenskyi (Lamiaceae) in the Kyzyl-Kum desert of Uzbekistan under drying climate

DOI
https://doi.org/10.14719/pst.8756
Submitted
8 April 2025
Published
17-11-2025 — Updated on 04-12-2025
Versions

Abstract

The desert ecosystems of Central Asia, particularly Uzbekistan, feature rich biodiversity and distinctive plant communities. Global warming and drought have led to habitat destruction in Central Asia, resulting in increase in the number of endangered species. Intense human activity and prolonged droughts driven by climate change have resulted in habitat destruction and a corresponding vegetation cover crisis in these regions. This study aimed to assess the current five populations of L. vvedenskyi, which are primarily distributed in the Kyzyl-Kum desert of Uzbekistan. This species has been affected by climatic changes and human pressure in Uzbekistan. Lagochilus vvedenskyi populations show strong ecological sensitivity to increasing drought conditions in arid regions. The present study describes five populations of L. vvedenskyi in Uzbekistan. The populations were estimated, measured and the population spectrum was determined for all five groups. The plant communities comprise 42 species, including one species of semi-shrub, two species of dwarf-shrubs, seven species of shrubs, 26 species of perennial herbs and six species of annual herbs. The ontogenetic structure of these communities is incomplete, meaning that not all age groups are represented due to biological characteristics and the dry climate. Across all sites, the population density is low, with most populations classified as mature ontogenetic structures. Significant changes in δ13C indicate that the response to reduced precipitation is linked to drought stress. Given the expected drier and hotter climate in Uzbekistan in the upcoming decades, these findings enhance our understanding of the current state of L. vvedenskyi, suggesting that this species may soon face extinction in the wild. Consequently, establishing conservation and protection areas for this species is essential.

References

  1. 1. Helfenstein IS, Sturm JT, Schmid B, Damm A, Schuman MC, Morsdorf F. Satellite observations reveal a positive relationship between trait-based diversity and drought response in temperate forests. Global Change Biology. 2025;31(2):e70059. https://doi.org/10.1111/gcb.70059
  2. 2. Dantas BF, Moura MS, Pelacani CR, Angelotti F, Taura TA, Oliveira GM, et al. Rainfall, not soil temperature, will limit the seed germination of dry forest species with climate change. Oecologia. 2020;192(2):529-41. https://doi.org/10.1007/s00442-019-04575-x
  3. 3. Anderegg WR, Anderegg LD, Huang CY. Testing early warning metrics for drought-induced tree physiological stress and mortality. Global Change Biology. 2019;25(7):2459-69. https://doi.org/10.1111/gcb.14655
  4. 4. Connor EW, Hawkes CV. Effects of extreme changes in precipitation on the physiology of C4 grasses. Oecologia. 2018;188(2):355-65. https://doi.org/10.1007/s00442-018-4212-5
  5. 5. Ehleringer JR, Cerling TE, Helliker BR. C4 photosynthesis, atmospheric CO2 and climate. Oecologia. 1997;112(3):285-99. https://doi.org/10.1007/s004420050311
  6. 6. Ehleringer JR. Carbon isotope ratios and physiological processes in aridland plants. In: Rundel PW, Ehleringer JR, Nagy KA, editors. Stable Isotopes in Ecological Research. New York (NY): Springer; 1989. p. 41-54. https://doi.org/10.1007/978-1-4612-3498-2_3
  7. 7. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. Impacts of climate change on the future of biodiversity. Ecology Letters. 2012;15(4):365-77. https://doi.org/10.1111/j.1461-0248.2011.01736.x
  8. 8. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M. Global temperature change. Proc Nat Acad Sci. 2006;103(39):14288-93. https://doi.org/10.1073/pnas.0606291103
  9. 9. Fallah B, Didovets I, Rostami M, Hamidi M. Climate change impacts on Central Asia: trends, extremes and future projections. Int J Climat. 2024;44(10):3191-213. https://doi.org/10.1002/joc.8519
  10. 10. Lioubimtseva E, Henebry GM. Climate and environmental change in arid Central Asia: impacts, vulnerability and adaptations. J Arid Environ. 2009;73(11):963-77. https://doi.org/10.1016/j.jaridenv.2009.04.022
  11. 11. Groisman P, Shugart H, Kicklighter D, Henebry G, Tchebakova N, Maksyutov S, et al. Northern Eurasia future initiative (NEFI): Facing the challenges and pathways of global change in the twenty-first century. Progress Earth Planet Sci. 2017;4(1):1-48. https://doi.org/10.1186/s40645-017-0154-5
  12. 12. Groisman P, Bulygina O, Henebry G, Speranskaya N, Shiklomanov A, Chen Y, et al. Dryland belt of northern Eurasia: contemporary environmental changes and their consequences. Environ Res Lett. 2018;13(11):115008. https://doi.org/10.1088/1748-9326/aae43c
  13. 13. Unger-Shayesteh K, Vorogushyn S, Farinotti D, Gafurov A, Duethmann D, Mandychev A, Merz B. What do we know about past changes in the water cycle of Central Asian headwaters? A review. Global and Planet Change. 2013;110:4-25. https://doi.org/10.1016/j.gloplacha.2013.02.004
  14. 14. Saidaliyeva Z, Muccione V, Shahgedanova M, Bigler S, Adler C, Yapiyev V. Adaptation to climate change in the mountain regions of Central Asia: A systematic literature review. Wiley Interdisciplinary Reviews: Climate Change. 2024;e891. https://doi.org/10.1002/wcc.891
  15. 15. Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Fonseca GAB. Hotspots revisited: Earth's biologically richest and most endangered terrestrial ecoregions. Mexico City: Conservation International in Association with CEMEX; 2004.
  16. 16. Davis MB, Shaw RG, Etterson JR. Evolutionary responses to changing climate. Ecology. 2005;86(7):1704-14. https://doi.org/10.1890/03-0788
  17. 17. Akçakaya HR, Butchart SH, Mace GM, Stuart SN, Hilton-Taylor C, CIG. Use and misuse of the IUCN Red List criteria in projecting climate change impacts on biodiversity. Global Change Biology. 2006;12(11):2037-43. https://doi.org/10.1111/j.1365-2486.2006.01253.x
  18. 18. Red Book of Uzbekistan. Plants and fungi. Tashkent: Chinor Publishing House; 2009.
  19. 19. IPCC. Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge University Press; 2001. p. 881.
  20. 20. Mitchell D, Williams RB, Hudson D, Johnson P. A Monte Carlo analysis on the impact of climate change on future crop choice and water use in Uzbekistan. Food Security. 2017;9(4):697-709. https://doi.org/10.1007/s12571-017-0690-2
  21. 21. Akhmedov A, Rog I, Bachar A, Shomurodov H, Nasirov M, Klein T. Higher risk for six endemic and endangered Lagochilus species in Central Asia under drying climate. Perspectives in Plant Ecology Evolution System. 2021;48:125586. https://doi.org/10.1016/j.ppees.2020.125586
  22. 22. Tojibaev K, Beshko N, Karimov F, Batoshov A, Turginov O, Azimova D. The database of the flora of Uzbekistan. J Arid Land Stud. 2014;24:157-60.
  23. 23. Avasiloaiei A, Zărnescu I, Popa DS. Lamiaceae family: diversity and medicinal potential. Plants. 2023;12(7):1520. https://doi.org/10.3390/plants12071520
  24. 24. Malikova MK, Rakhimov DA. Plant polysaccharides VIII: polysaccharides of Lagochilus zeravschanicus. Chemical Natural Compounds. 1997;33(4):438-40. https://doi.org/10.1007/BF02282360
  25. 25. Akramov DKh, Mamadalieva NZ, Porzel A, Hussain H, Dube M, Akhmedov AK, et al. Sugar-containing compounds and biological activities of Lagochilus setulosus. Molecules. 2021;26(6):1755. https://doi.org/10.3390/molecules26061755
  26. 26. Eshibaev A, Aimenova Z, Akynova L, Nurseitova L, Kopabaeva A. The population status of Lagochilus setulosus Vved. and its biochemical composition. Ecological Questions. 2021;32(2):111-8. https://doi.org/10.12775/EQ.2021.018
  27. 27. Sánchez-Ramos M, Encarnación-García JG, Marquina-Bahena S, Sánchez-Carranza JN, Bernabé-Antonio A, Domínguez-Villegas V, Cruz-Sosa F. Cytotoxic activity of wild plant and callus extracts of Ageratina pichinchensis and 2,3-dihydrobenzofuran isolated from a callus culture. Pharmaceuticals. 2023;16(10):1400. https://doi.org/10.3390/ph16101400
  28. 28. Muminov MA, Nosirov MG, Ismailkhujaev B, Avutkhanov B, Khujanov A, Tursunov A, et al. Monitoring and mapping rangeland health using remote sensing and GIS methods: a case study in the foothill Artemisia-ephemeral rangeland region in Samarkand. E3S Web of Conferences. 2024;563:03070. https://doi.org/10.1051/e3sconf/202456303070
  29. 29. Muminov MA, Nosirov MG, Mukimov TKh, Normuradov DS, Khodjibabayev Kh, Ismailkhujaev B, et al. Multi-faceted analysis of land use impact on rangeland health: insights from normalized difference vegetation index assessment in stream, road and mining areas. J Eco Eng. 2025;26(1):196-203. https://doi.org/10.12911/22998993/195472
  30. 30. Roy P, Pal SC, Chakrabortty R, Chowdhuri I, Saha A, Ruidas D, Islam A. Climate change and geo-environmental factors influencing desertification: a critical review. Environ Sci Poll Res. 2024. https://doi.org/10.1007/s11356-024-32432-9
  31. 31. Shomurodov HF, Akhmedov A, Saribayeva SU. Distribution and the current state of Lagochilus acutilobus (Lamiaceae) in connection with the oil and gas sector development in Uzbekistan. Ecological Questions. 2014;19:45-49. https://doi.org/10.12775/EQ.2014.004
  32. 32. Cheremushkina VA, Astashenkov AYu. Morphogenesis and ontogenetic structure of the coenopopulation of Nepeta podostachys (Lamiaceae) in the conditions of Tajikistan. The Flora of Asian Russia. 2014;3(15):32-38.
  33. 33. Barsukova I, Leonova T. Biological peculiarities and characteristics of Erodium tataricum Willd. cenopopulation in Khakasia. Bio Web of Conferences. 2019;16:00004. https://doi.org/10.1051/bioconf/20191600004
  34. 34. Shomurodov HF, Saribaeva ShU, Akhmedov A. Distribution pattern and modern status of rare plant species on the Ustyurt Plateau in Uzbekistan. Arid Ecosystems. 2015;5(4):261-7. https://doi.org/10.1134/S2079096115040125
  35. 35. Ydyrys A, Mukhitdinov NM, Ametov AA, Abidkulova KT, Akhmetova AB, Tynybekov BM. Assessment of species communities of population rare, endemic and medicinal plant Ferula iliensis Krasn. ex Korov. on the left bank of the Ili River, Almaty region. Vestnik KazNU. Seriya Biologicheskaya. 2016;68(3):14-23.
  36. 36. Rakhimova NK, Rakhimova T, Sadinov JS. Current state of Anabasis salsa pasture varieties in Karakalpak Ustyurt (Uzbekistan) due to Aral Sea drying. Plant Science Today. 2022;9(sp3):25-30. https://doi.org/10.14719/pst.1804
  37. 37. Saribaeva Sh, Abduraimov O, Allamuratov A. Assessment of the population status of Allium oschaninii O. Fedtsch. in the mountains of Uzbekistan. Ekológia (Bratislava). 2022;41(2):147-54. https://doi.org/10.2478/eko-2022-0015
  38. 38. Azizbek M, Komiljon T, Ozodbek A, Bekzod M, Akmal A. The current state of natural resources Ferula tadshikorum Pimenov in Uzbekistan. Plant Science Today (Early Access). 2025;10:28. https://doi.org/10.14719/pst.3710
  39. 39. Akhmedov A, Nomozova Z, Umurzakova Z, Turdiboev O, Atayeva S, Jumayev N. Assessment of the current condition of populations of the Red List species Salvia submutica Botsch. & Vved. (Lamiaceae Lindl.) in Nuratau mountain ridge, Uzbekistan. Ekológia (Bratislava). 2022;41(4):322-8. https://doi.org/10.2478/eko-2022-0033
  40. 40. Akhmedov A, Beshko N, Keldiyorov X, Umurzakova Z, Hasanov M, Atayeva S, Jumayev N. Ontogenetic structure of populations of Lamiaceae in Uzbekistan under drought climate. Ekológia (Bratislava). 2023;42(4):349-53. https://doi.org/10.2478/eko-2023-0039
  41. 41. Bobokandov N, Nomozova Z, Tashpulatov Y, Isomov E, Akhmedov A. Assessment of the current condition and ontogenetic structure of the populations of Leontice incerta Pall. (Berberidaceae) in the Kyzyl-Kum Desert, Uzbekistan. Biodiversitas Journal of Biological Diversity. 2024;25(6). https://doi.org/10.13057/biodiv/d250646
  42. 42. Shomurodov HF. Forage plants of Kyzyl-Kum and prospects for their use [dissertation]. Tashkent: Institute of Botany, Uzbek Academy of Sciences; 2018.
  43. 43. Harris I, Jones PD, Osborn TJ, Lister DH. Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 dataset. International Journal of Climatology. 2020;34(3):623-42. https://doi.org/10.1002/joc.3711
  44. 44. Graven H. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geoscientific Model Development. 2017;10:4405-17. https://doi.org/10.5194/gmd-10-4405-2017
  45. 45. Zaugolnova LB. The structure of the populations of seed plants and monitoring. St. Petersburg: Resume of Dissertation for Doctor of Biological Sciences; 1994. 70 p.
  46. 46. Rabotnov TA. Life cycle of perennial herbaceous plants in meadow coenoses. Proceedings of the Biological Sciences. 1950;3(6):7-204.
  47. 47. Uranov AA. Age diversity of phytocoenopopulations as the function of time and energetic wave processes (in Russian). Biological Sciences. 1975;2:7-34.
  48. 48. Coenopopulations of plants: basic concepts and structure. Singapore: World Scientific; 1976.
  49. 49. Uranov AA, Smirnova OV. Classification and main features of the development of populations of perennial plants (in Russian). Bulletin MOIP. 1976;74(2):119-34.
  50. 50. Lyu Y, Shi P, Han G, Liu L, Guo L, Hu X, Zhang G. Desertification control practices in China. Sustainability. 2020;12(8):3258. https://doi.org/10.3390/su12083258
  51. 51. Zang YX, Min XJ, de Dios VR, Ma JY, Sun W. Extreme drought affects the productivity, but not the composition, of a desert plant community in Central Asia differentially across microtopographies. Science of the Total Environment. 2020;717:137251. https://doi.org/10.1016/j.scitotenv.2020.137251
  52. 52. Zambrano J, Garzon-Lopez CX, Yeager L, Fortunel C, Cordeiro NJ, Beckman NG. The effects of habitat loss and fragmentation on plant functional traits and functional diversity: what do we know so far? Oecologia. 2019;191(3):505-18. https://doi.org/10.1007/s00442-019-04505-x

Downloads

Download data is not yet available.