Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Review on possibilities of domestication with special focus on medicinal properties and variability in Indian Pennywort (Centella asiatica (L.) Urban) for its potential commercial cultivation

DOI
https://doi.org/10.14719/pst.8766
Submitted
9 April 2025
Published
11-11-2025

Abstract

Indian Pennywort (Centella asiatica (L.) Urban) is a traditional medicinal herb, used in various traditional medicine systems. It is a herbaceous perennial preferring a moist microclimate. C. asiatica has proven medicinal utility in wound healing, nerve-related ailments and has significant antibacterial and antioxidant activities. Its demand in the global market is on an increasing trend. Phytochemical analysis shows that it is rich in medicinally important asiatic acid, madecassic acid, asiaticoside, brahmoside centellin, centellicin and asiaticin, etc. C. asiatica is being collected from wild habitat and it endangers its existence, which emphasize its domestication. The crucial process in domestication is to identify genotypes that exhibit high herbage yield and enhanced biomolecule content. Production of bioactive compounds in medicinal herbs is significantly affected by genotypes and the place of cultivation. It is vital to screen and characterize the germplasm of C. asiatica for optimal commercial cultivation in specific environmental conditions. Various niche approaches were being reported for its sustainable cultivation. Various commercial products are on the market, including raw extracts to isolated phytochemicals, gel, powder, capsules, etc. Studies on the production of medicinally important phytochemicals through cell cultures of C. asiatica, which may be a key approach for its conservation in wild habitats. Hence, the future work may concentrate on the development of agro techniques for commercial cultivation, selection of suitable genotypes for various medicinal and industrial purposes, more insight into its medicinal properties and improving the efficiency of the medicinal properties through various formulations.

References

  1. 1. Hausen BM. Centella asiatica (Indian pennywort), an effective therapeutic but a weak sensitizer. Contact Dermatitis. 1993;29(4):175–9. https://doi.org/10.1111/j.1600–0536.1993.tb03532.x
  2. 2. Mando Z, Mando H, Afzan A, et al. Biomarker triterpenoids of Centella asiatica as potential antidepressant agents: combining in vivo and in silico studies. Behav Brain Res. 2024;466:114976. https://doi.org/10.1016/j.bbr.2024.114976
  3. 3. Gohil K, Patel J, Gajjar A. Pharmacological review on Centella asiatica: a potential herbal cure-all. Indian J Pharm Sci. 2010;72(5):546–56. https://doi.org/10.4103/0250–474x.78519
  4. 4. Jangra G. To formulate and evaluate the collagen–based hydrogel containing Centella asiatica. Afr J Biomed Res. 2024;27(4s):2796–810. https://doi.org/10.53555/ajbr.v27i4s.4109
  5. 5. Witkowska K, Paczkowska–Walendowska M, Garbiec E, Cielecka–Piontek J. Topical application of Centella asiatica in wound healing: recent insights into mechanisms and clinical efficacy. Pharmaceutics. 2024;16(10):1252. https://doi.org/10.3390/pharmaceutics16101252
  6. 6. Boira C, Meunier M, Bracq M, et al. The natural Centella asiatica extract acts as a stretch mark eraser: a biological evaluation. Cosmetics. 2024;11(1):15. https://doi.org/10.3390/cosmetics11010015
  7. 7. Chonsut P, Romyasamit C, Konyanee A, et al. Potential activities of Centella asiatica leaf extract against pathogenic bacteria‐associated biofilms and its anti‐inflammatory effects. Adv Pharmacol Pharm Sci. 2024;2024(1):5959077. https://doi.org/10.1155/2024/5959077
  8. 8. Kandasamy A, Aruchamy K, Rangasamy P, et al. Phytochemical analysis and antioxidant activity of Centella asiatica extracts: an experimental and theoretical investigation of flavonoids. Plants. 2023;12(20):3547–7. https://doi.org/10.3390/plants12203547
  9. 9. Thanh T, Ly HT, Kim T, Le VM. Anti–hyperglycemic effect of herbal formula of Moringa oleifera, Vernonia amygdalina and Centella asiatica extracts in streptozotocin–induced hyperglycemic mice. Pharmacol Res Mod Chin Med. 2024;100428. https://doi.org/10.1016/j.prmcm.2024.100428
  10. 10. Oyenihi A, George T, Oyenihi O, et al. Three decades of research on Centella asiatica: insights and future trends from bibliometric analysis. J Herb Med. 2023;100662. https://doi.org/10.1016/j.hermed.2023.100662
  11. 11. Gray NE, Magana AA, Lak P, et al. Centella asiatica: phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem Rev. 2017;17(1):161–94. https://doi.org/10.1007/s11101–017–9528–y
  12. 12. Sun B, Wu L, Wu Y, et al. Therapeutic potential of Centella asiatica and its triterpenes: a review. Front Pharmacol. 2020;11:568032. https://doi.org/10.3389/fphar.2020.568032
  13. 13. Kunjumon R, Johnson AJ, Baby S. Centella asiatica: secondary metabolites, biological activities and biomass sources. Phytomedicine Plus. 2022;2(1):100176. https://doi.org/10.1016/j.phyplu.2021.100176
  14. 14. Masi F, Chianese G, Peterlongo F, et al. Phytochemical profile of Centevita®, a Centella asiatica leaf extract and isolation of a new oleanane–type saponin. Fitoterapia. 2022;158:105163. https://doi.org/10.1016/j.fitote.2022.105163
  15. 15. Pal RS, Pal Y, Wal P, Singh V. Isolation and characterization of n–n-eicosanyl lignocerate from the whole aerial parts of Centella asiatica Linn. Int J Pharm Sci Rev Res. 2016;40:74–7. https://doi.org/10.22159/ajpcr.2016.v9s3.13427
  16. 16. Rais I, Ali M. Triterpenic and acyl glycosides from the leaves of Centella asiatica (L.) Urban. Trends Phytochem. 2018;2:43–52. https://doi.org/10.1016/j.tplant.2017.12.004
  17. 17. Oyedeji OA, Afolayan AJ. Chemical composition and antibacterial activity of the essential oil of Centella asiatica. growing in South Africa. Pharm Biol. 2005;43(3):249–52. https://doi.org/10.1080/13880200590928843
  18. 18. Siddiqui BS, Aslam H, Ali ST, et al. Two new triterpenoids and a steroidal glycoside from the aerial parts of Ocimum basilicum. ChemInform. 2007;38(41). https://doi.org/10.1002/chin.200741155
  19. 19. Matsuda H, Morikawa T, Ueda H. Medicinal foodstuffs (26) inhibitors of aldose reductase and new triterpene and its oligoglycoside, centellasapogenol A and centellasaponin A, from Centella asiatica (Gotu kola). Heterocycles. 2001;55:1499–504. https://doi.org/10.3987/COM–01–9259
  20. 20. Jamil SS, Qudsia N, Salam M. Centella asiatica (Linn.) Urban – a review. Indian J Nat Prod Resour. 2007;6:158–70. https://doi.org/10.5555/20073132226
  21. 21. Dutta T, Basu UP. Isothankunic acid – a new triterpene acid from Centella asiatica (URB). Bull Nat Inst Sci. 1968;37:178–84. https://doi.org/10.1007/BF02887209
  22. 22. Rumalla CS, Ali Z, Weerasooriya AD, et al. Two new triterpene glycosides from Centella asiatica. Planta Med. 2010;76:1018–21. https://doi.org/10.1055/s–0029–1240864
  23. 23. Wu Z, Li W, Zhou J, et al. Oleanane– and ursane–type triterpene saponins from Centella asiatica exhibit neuroprotective effects. J Agric Food Chem. 2020;68:6977–86. https://doi.org/10.1021/acs.jafc.0c01476
  24. 24. James J, Dubery I. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules. 2009;14(10):3922–41. https://doi.org/10.3390/molecules14103922
  25. 25. Weng X, Chen Y, Shao Y, Kong D. A new ursane–type triterpene saponin from Centella asiatica. Chin J Pharm. 2011;3:187–8. https://doi.org/10.1016/j.bmcl.2011.01.066
  26. 26. Weng XX, Zhang J, Gao W, et al. Two new pentacyclic triterpenoids from Centella asiatica. Helv Chim Acta. 2012;95(2):255–60. https://doi.org/10.1002/hlca.201100287
  27. 27. Yu QL, Duan HQ, Gao WY, Takaishi Y. A new triterpene and a saponin from Centella asiatica. Chin Chem Lett. 2007;18(1):62–4. https://doi.org/10.1016/j.cclet.2006.11.033
  28. 28. Gayathri K, Abhinand PA, Gayathri V, et al. Computational analysis of phytocompounds in Centella asiatica for its antifibrotic and drug–likeness properties – Herb to drug study. Heliyon. 2024;10(13):e33762. https://doi.org/10.1016/j.heliyon.2024.e33762
  29. 29. Chianese G, Masi F, Cicia D, et al. Isomadecassoside, a new ursane–type triterpene glycoside from Centella asiatica leaves, reduces nitrite levels in LPS–LPS-stimulated macrophages. Biomolecules. 2021;11(4):494. https://doi.org/10.3390/biom11040494
  30. 30. Shao Y, Ou–Yang DW, Gao W, et al. ChemInform abstract: three new pentacyclic triterpenoids from Centella asiatica. ChemInform. 2015;46(4). https://doi.org/10.1002/chin.201504209
  31. 31. Shao Y, Ou–Yang DW, Cheng L, et al. New pentacyclic triterpenoids from Centella asiatica. Helv Chim Acta. 2015;98(5):683–90. https://doi.org/10.1002/hlca.201400283
  32. 32. Yoshida M, Fuchigami M, Nagao T, et al. Antiproliferative constituents from Umbelliferae plants VII. active triterpenes and rosmarinic acid from Centella asiatica. Biol Pharm Bull. 2005;28(1):173–5. https://doi.org/10.1248/bpb.28.173
  33. 33. Brinkhaus B, Lindner M, Schuppan D, et al. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine. 2000;7(5):427–48. https://doi.org/10.1016/s0944–7113(00)80065–3
  34. 34. Azerad R. Chemical structures, production and enzymatic transformations of sapogenins and saponins from Centella asiatica (L.) Urban. Fitoterapia. 2016;114:168–87. https://doi.org/10.1016/j.fitote.2016.07.011
  35. 35. Kuroda M, Mimaki Y, Harada H, et al. Five new triterpene glycosides from Centella asiatica. Nat Med. 2001;55(3):134–8.
  36. 36. Rastogi R, Sarkar B, Dhar M. Chemical examination of Centella asiatica. Linn.: Part I – Isolation of the chemical constituents. J Sci Ind Res. 1960;19B:252–7.
  37. 37. Sahu NP, Roy SK, Mahato SB. Spectroscopic determination of structures of triterpenoid trisaccharides from Centella asiatica. Phytochemistry. 1989;28(10):2852–4. https://doi.org/10.1016/s0031–9422(00)98106–8
  38. 38. Jiang ZY, Zhang XM, Zhou J, et al. New triterpenoid glycosides from Centella asiatica. Helv Chim Acta. 2005;88(2):297–303. https://doi.org/10.1002/hlca.200590011
  39. 39. Nhiem NX, Tai BH, Quang TH, et al. A new ursane–type triterpenoid glycoside from Centella asiatica leaves modulates the production of nitric oxide and secretion of TNF–α in activated RAW 264.7 cells. Bioorg Med Chem Lett. 2011;21(6):1777–81. https://doi.org/10.1016/j.bmcl.2011.01.066
  40. 40. Ren B, Luo W, Xie M, Zhang M. Two new triterpenoid saponins from Centella asiatica. Phytochem Lett. 2021;44:102–5. https://doi.org/10.1016/j.phytol.2021.06.012
  41. 41. Sondhi N, Bhardwaj R, Kaur S, et al. Inhibition of H2O2–induced DNA damage in single cell gel electrophoresis assay (comet assay) by castasterone isolated from leaves of Centella asiatica. Health. 2010;2(6):595–602. https://doi.org/10.4236/health.2010.26088
  42. 42. Chandrika UG, Kumara PAP. Gotu Kola (Centella asiatica). Adv Food Nutr Res. 2015;76:125–57. https://doi.org/10.1016/bs.afnr.2015.08.001
  43. 43. Antognoni F, Perellino NC, Crippa S, et al. Irbic acid, a dicaffeoylquinic acid derivative from Centella asiatica cell cultures. Fitoterapia. 2011;82(7):950–4. https://doi.org/10.1016/j.fitote.2011.05.008
  44. 44. Long HS, Stander MA, Van Wyk BE. Notes on the occurrence and significance of triterpenoids (asiaticoside and related compounds) and caffeoylquinic acids in Centella species. S Afr J Bot. 2012;82:53–9. https://doi.org/10.1016/j.sajb.2012.07.017
  45. 45. Subban R, Veerakumar A, Manimaran R, et al. Two new flavonoids from Centella asiatica (Linn.). J Nat Med. 2008;62(3):369–73. https://doi.org/10.1007/s11418-008-0229-0
  46. 46. Mustafa RA, Hamid AA, Mohamed S, Bakar FA. Total phenolic compounds, flavonoids and radical scavenging activity of 21 selected tropical plants. J Food Sci. 2010;75(1):C28–35. https://doi.org/10.1111/j.1750–3841.2009.01401.x
  47. 47. Devkota A, Dall'Acqua S, Jha PK, et al. Variation in the active constituent contents in Centella asiatica grown in different habitats in Nepal. Bot Orient J Plant Sci. 1970;7:43–7. https://doi.org/10.3126/botor.v7i0.4372
  48. 48. Sangwan RS, Tripathi S, Singh J, et al. De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural, functional and regulatory genes with special reference to secondary metabolism. Gene. 2013;525(1):58–76. https://doi.org/10.1016/j.gene.2013.04.057
  49. 49. Govindan G, Sambandan T, Govindan M, et al. A Bioactive polyacetylene compound isolated from Centella asiatica. Planta Med. 2007;73(6):597–9. https://doi.org/10.1055/s–2007–981521
  50. 50. Schulte K, Rucker G, Bary A. Polyacetylene aus Hydrocotyle asiatica L. Arch Pharm (Weinheim). 1973;306:197–209. https://doi.org/10.1002/ardp.19733060307
  51. 51. Das A, Mallik R. Correlation between genomic diversity and Asiaticoside content in Centella asiatica (L) Urban. Bot Bull Acad Sin. 1991;32(1):1–8.
  52. 52. Aziz ZA, Davey MR, Power JB, et al. Production of asiaticoside and madecassoside in Centella asiatica in vitro and in vivo. Biologia Plant. 2007;51(1):34–42. https://doi.org/10.1007/s10535-007-0008-x
  53. 53. Rahajanirina VR, Raoseta SOR, Roger E, et al. Influence de la saison sur la production de biomasse et la teneur en principes actifs de Centella asiatica dans la réserve de Vohimana. Halscience. 2024:81–6.
  54. 54. Rakotondralambo SOR, Rodier–Goud M, Rivallan R, et al. Insight into the biology, genetics and evolution of the Centella asiatica polyploid complex in Madagascar. Ind Crops Prod. 2013;47:118–25. https://doi.org/10.1016/j.indcrop.2013.02.022
  55. 55. Müller V, Lankes C, Zimmermann BF, et al. Centelloside accumulation in leaves of Centella asiatica is determined by resource partitioning between primary and secondary metabolism, while influenced by supply levels of either nitrogen, phosphorus or potassium. J Plant Physiol. 2013;170(13):1165–75. https://doi.org/10.1016/j.jplph.2013.03.010
  56. 56. Müller V, Lankes C, Schmitz–Eiberger M, et al. Estimation of flavonoid and centelloside accumulation in leaves of Centella asiatica L. Urban by multiparametric fluorescence measurements. Environ Exp Bot. 2013;93:27–34. https://doi.org/10.1016/j.envexpbot.2013.05.001
  57. 57. Thomas MT, Kurup R, Johnson AJ, et al. Elite genotypes/chemotypes, with high contents of madecassoside and asiaticoside, from sixty accessions of Centella asiatica of South India and the Andaman Islands: For cultivation and utility in cosmetic and herbal drug applications. Ind Crops Prod. 2010;32(3):545–50 https://doi.org/10.1016/j.indcrop.2010.07.003
  58. 58. Choi JN, Oh MW, Lee HJ, et al. Comparison of growth characterisitics, asiaticoside content and antioxidant activities of Centella asiatica (L.) Urb. Korean J Plant Res. 2021;34(1):44–51. https://doi.org/10.7732/kjpr.2021.34.1.043
  59. 59. Shin HY, Kim H, Jung S, et al. Interrelationship between secondary metabolites and antioxidant capacities of Centella asiatica using bivariate and multivariate correlation analyses. Appl Biol Chem. 2021;64(1). https://doi.org/10.1186/s13765–021–00656–9
  60. 60. Rakotondralambo R. Diversités Morphologique et Génétique de Centella asiatica à Madagascar. [PhD thesis]. Antananarivo: Université d’Antananarivo, Département de Biologie et Ecologie Végétale, Option Physiologie Végétale; 2006.
  61. 61. Thong–on W, Arimatsu P, Pitiporn S, et al. Field evaluation of in vitro–induced tetraploid and diploid Centella asiatica (L.) Urban. J Nat Med. 2013;68(2):267–73. https://doi.org/10.1007/s11418-013-0761-4
  62. 62. Upadhyay S, Khosa R, Sharma D, et al. Total glycosides content and antistress activity of Indian and Mauritius Centella asiatica: a comparison. Indian Drugs. 1991;28:338–43.
  63. 63. Padmalatha K, Prasad. Medicinal and Aromatic Plant Science and Biotechnology Genetic Diversity in Centella asiatica (L.) Urb., a memory–enhancing neutraceutical herb, using RAPD Markers. Med Aromat Plant Sci Biotechnol. 2008;2(2):1–8.
  64. 64. Peiris KHS, Kays SJ. Asiatic Pennywort [Centella asiatica (L.) Urb.]: a little–known vegetable crop. HortTechnology. 1996;6(1):13–8. https://doi.org/10.21273/horttech.6.1.13
  65. 65. Sharma B, Kumar A. Biodiversity of medicinal plants of Triyugi Narain (Garhwal Himalaya) and their conservation. In: Proceedings of the National Conference on Recent Trends in Spices and Medicinal Plant Research. 1998. p. 1–4.
  66. 66. Shukurova MK, Myint D, Yi SS, et al. Morphological description and ethnobotanical review of the orphan crop myin–hkwa (Centella asiatica L.) from Myanmar. Front Sustain Food Syst. 2021;5:680862. https://doi.org/10.3389/fsufs.2021.680862
  67. 67. Bhattacharya R, Parmar K, Itankar PR, et al. Phytochemical and pharmacological evaluation of organic and non–organic cultivated nutritional Centella asiatica collected after different time intervals of harvesting. S Afr J Bot. 2017;112:237–45. https://doi.org/10.1016/j.sajb.2017.06.003
  68. 68. Randriamampionona D, Diallo B, Rakotoniriana F, et al. Comparative analysis of active constituents in Centella asiatica samples from Madagascar: application for ex situ conservation and clonal propagation. Fitoterapia. 2007;78(7–8):482–9. https://doi.org/10.1016/j.fitote.2007.03.016
  69. 69. Nav SN, Ebrahimi SN, Sonboli A, Mirjalili MH. Variability, association and path analysis of centellosides and agro-morphological characteristics in Iranian Centella asiatica (L.) Urban Ecotypes. S Afr J Bot. 2021;139:254–66. https://doi.org/10.1016/j.sajb.2021.03.006
  70. 70. Singh S, Singh DR, Banu VS, et al. Functional constituents (micronutrients and phytochemicals) and antioxidant activity of Centella asiatica (L.) Urban leaves. Ind Crops Prod. 2014;61:115–9. https://doi.org/10.1016/j.indcrop.2014.06.045
  71. 71. Prasad A, Dhawan SS, Mathur AK, et al. Morphological, chemical and molecular characterization of Centella asiatica germplasms for commercial cultivation in the Indo–Gangetic plains. Nat Prod Commun. 2014;9(6):779–84.
  72. 72. Thi H, Hoang T, Ho HN, et al. Morphological, phytochemical and genetic characterization of Centella asiatica accessions collected throughout Vietnam and Laos. Saudi J Biol Sci. 2024;31(1):103895. https://doi.org/10.1016/j.sjbs.2023.103895
  73. 73. Prasad A, Mathur A, Singh M, et al. Growth and asiaticoside production in multiple shoot cultures of a medicinal herb, Centella asiatica (L.) Urban, under the influence of nutrient manipulations. J Nat Med. 2011;66(2):383–7. https://doi.org/10.1007/s11418-011-0588-9
  74. 74. McCaleb R, Morien K, Schott T. Market report on herbs and spices. Herb Research Foundation; 2000. http://www.herbs.org/africa/market report 0400.html
  75. 75. Gupta A, Verma S, Kushwaha P, et al. Quantitative estimation of Asiatic acid, Asiaticoside & Madecassoside in two accessions of Centella asiatica (L) Urban for morpho–chemotypic variation. Indian J Pharm Educ Res. 2014;48(3):75–9. https://doi.org/10.5530/ijper.48.3.9
  76. 76. Srivastava S, Verma S, Gupta A, et al. Studies on chemotypic variation in Centella asiatica (L.) Urban from Nilgiri range of India. J Planar Chromatogr Mod TLC. 2014;27(6):454–9. https://doi.org/10.1556/jpc.27.2014.6.9 9
  77. 77. Srivastava S, Verma S, Gupta A, et al. Chemotypic variation among different accessions of Centella asiatica (L.) urban from the central zone of India and strategies for their conservation. In: Chauhan RK, Pushpangadan P, George V, editors. Natural products: recent advances. Write & Print Publications; 2015. p. 276–85.
  78. 78. Srivastava S, Tiwari S, Srivastava N, et al. Chemotaxonomic studies on Centella asiatica (L.) Urb. from the varied phytogeographical conditions of India for its industrial prospection. Proc Natl Acad Sci India Sect B Biol Sci. 2018;89(3):1057–66. https://doi.org/10.1007/s40011-018-1021-x .
  79. 79. Puttarak P, Panichayupakaranant P. Factors affecting the content of pentacyclic triterpenes in Centella asiatica raw materials. Pharm Biol. 2012;50(12):1508–12. https://doi.org/10.3109/13880209.2012.685946
  80. 80. Singh SP, Misra A, Kumar B, et al. Identification of potential cultivation areas for centelloside–specific elite chemotypes of Centella asiatica (L.) using ecological niche modeling. Ind Crops Prod. 2022;188:115657. https://doi.org/10.1016/j.indcrop.2022.115657
  81. 81. Lin PC, Chiang TY, Chen ML, et al. Global prospects for cultivating Centella asiatica: an ecological niche modeling approach under current and future climatic scenarios. J Agric Food Res. 2024;101380. https://doi.org/10.1016/j.jafr.2024.101380
  82. 82. James JT, Meyer R, Dubery IA. Characterisation of two phenotypes of Centella asiatica in Southern Africa through the composition of four triterpenoids in callus, cell suspensions and leaves. Plant Cell Tissue Organ Cult. 2008;94(1):91–9. https://doi.org/10.1007/s11240-008-9391-z
  83. 83. Bansal K, Bhati H, None V, et al. Recent insights into therapeutic potential and nanostructured carrier systems of Centella asiatica: An evidence–based review. Pharmacol Res Mod Chin Med. 2024;100403. https://doi.org/10.1016/j.prmcm.2024.100403
  84. 84. Lal RK, Gupta P, Dubey BK. Genetic variability and associations in the accessions of Manduk parni {Centella asiatica (L)}. Ind Crops Prod. 2017;96:173–7. https://doi.org/10.1016/j.indcrop.2016.11.056

Downloads

Download data is not yet available.