Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Genetic determinants underlying major disease resistance in sunflower: A review

DOI
https://doi.org/10.14719/pst.8883
Submitted
15 April 2025
Published
31-07-2025 — Updated on 15-08-2025
Versions

Abstract

Sunflower (Helianthus annuus L.) is an important oilseed crop worldwide, valued for its high-quality edible oil which is a rich source of unsaturated fatty acids and rich in vitamin E. It is widely preferred due to its adaptability to diverse agro-climatic conditions and short growing period. Statistical reports from Indiastat revealed that the sunflower cultivation in India covers 1.25 % of the global area and contributes around 0.58 % of the world’s production. However, its productivity is often hindered by many biotic stresses, especially diseases ranging from 30 % to 70 %. Although pest infestations do occur, diseases are considered more critical due to their rapid spread, persistent nature and potential for severe crop losses across various growing seasons. Considering all the factors, effective disease management is thus essential to sustain and enhance sunflower production, ensuring food security and economic stability for farmers. It is essential to comprehend the genetic factors that influence disease resistance to create cultivars that are high-yielding and durable and to improve crop sustainability along with reduced fungicide need. The promise of developing sunflower cultivars with broad-spectrum and long-lasting resistance lies in the integration of conventional and molecular approaches such as detection of resistant quantitative trait loci (QTLs), utilisation of wild species and the application of genomic selection strategies. This review consolidates existing insights into the genetic keystones of disease resistance in sunflower and highlights how wild Helianthus species serve as important reservoirs of resistance genes.

References

  1. 1. Nabipour A, Darvishzadeh R, Sarrafi AJCB. Conventional and molecular breeding of sunflower (Helianthus annuus L.). Crop Biotechnology. 2021;10(33):35-78. https://doi.org/10.30473/cb.2021.58978.1838
  2. 2. Darvishzadeh R, Pirzad A, Hatami-Maleki H, Kiani SP, Sarrafi A. Evaluation of the reaction of sunflower inbred lines and their F1 hybrids to drought conditions using various stress tolerance indices. Spanish Journal of Agricultural Research. 2010;8(4):1037-46. https://doi.org/10.5424/sjar/2010084-1398
  3. 3. Kolkman JM, Berry ST, Leon AJ, Slabaugh MB, Tang S, Gao W, et al. Single nucleotide polymorphisms and linkage disequilibrium in sunflower. Genetics. 2007;177(1):457-68. https://doi.org/10.1534/genetics.107.074054
  4. 4. Parkash V, Gaur A, Chauhan AJV. Sunflower: head rot, rust and powdery mildew. In: Diseases of Nationally Important Field Crops. 2014;30(100):491-500.
  5. 5. Rauf S, Jamil N, Tariq SA, Khan M, Kausar M, Kaya YJJotSoF, et al. Progress in modification of sunflower oil to expand its industrial value. Journal of the Science of Food and Agriculture. 2017;97(7):1997-2006. https://doi.org/10.1002/jsfa.8214
  6. 6. Lawson WR, Goulter KC, Henry RJ, Kong GA, Kochman JKJMB. Marker-assisted selection for two rust resistance genes in sunflower. Molecular Breeding. 1998;4:227-34. https://doi.org/10.1023/A:1009667112088
  7. 7. Cvejic S, Jocic S, Dedic B, Radeka I, Imerovski I, Miladinovic D, editors. Determination of resistance to broomrape in newly developed sunflower inbred lines. In: Third international symposium on broomrape (Orobanche spp) in sunflower. Cordoba, Spain; 2014.
  8. 8. Dimitrijevic A, Imerovski I, Miladinovic D, Cvejic S, Jocic S, Zeremski T, et al. Oleic acid variation and marker-assisted detection of Pervenets mutation in high-and low-oleic sunflower cross. Crop Breeding and Applied Biotechnology. 2017;17:235-41. https://doi.org/10.1590/1984-70332017v17n3a36
  9. 9. Rajeshwaran D, Narayana M, Palaniappan V, Ramasamy S, Lingan R, Muniyandi SJE. Detection and validation of novel QTL associated with powdery mildew (Golovinomyces cichoracearum (DC.) VP Heluta.) resistance in sunflower (Helianthus annuus L.). Euphytica. 2022;218(10):143. https://doi.org/10.1007/s10681-022-03098-6
  10. 10. Zimmer D. Some biotic and climatic factors influencing sporadic occurrence of sunflower downy mildew. Phytopathology. 1975;65:751-4. https://doi.org/10.1094/Phyto-65-751
  11. 11. Gascuel Q, Martinez Y, Boniface MC, Vear F, Pichon M, Godiard L. The sunflower downy mildew pathogen Plasmopara halstedii. Molecular Plant Pathology. 2015;16(2):109-22. https://doi.org/10.1111/mpp.12164
  12. 12. Singh B, Dev U, Agarwal PC, Khetarpal RK. Downy mildew of sunflower (Plasmopara haistedii), a disease introduced and established in India-status report in relation to quarantine. Indian Journal of Plant Genetic Resources. 2006;19(2):262-70.
  13. 13. Molinero-Ruiz M, Melero-Vara JM, Domínguez JJE. Inheritance of resistance to two races of sunflower downy mildew (Plasmopara halstedii) in two Helianthus annuus L. lines. Euphytica. 2003;131:47-51. https://doi.org/10.1023/A:1023063726185
  14. 14. Ioos R, Laugustin L, Rose S, Tourvieille J, Tourvieille de Labrouhe D. Development of a PCR test to detect the downy mildew causal agent Plasmopara halstedii in sunflower seeds. Plant Pathology. 2007;56(2):209-18. https://doi.org/10.1111/j.1365-3059.2006.01500.x
  15. 15. Zimmer D. Physiological specialization between races of Plasmopara halstedii in America and Europe. Phytopathology. 1974;64(11):1465-7. https://doi.org/10.1094/Phyto-64-1465
  16. 16. Carson M. New race of Plasmopara halstedii virulent on resistant sunflowers in South Dakota. Plant Diseases. 1981;65:842-3. https://doi.org/10.1094/PD-65-842
  17. 17. Gulya T, Raje N. A new race of sunflower downy mildew; 1985. https://www.cabidigitallibrary.org/doi/full/10.5555/19861656095
  18. 18. Ljubich A, Gulya T, Miller J. A new race of sunflower downy mildew in North America. Phytopathology. 1988;78:1508.
  19. 19. Gulya T, editor Proposal of a revised system of classifying races of sunflower downy mildew. In: Proceedings of the 17th Sunflower Research Workshop; 1995.
  20. 20. Spring O, Miltner F, Gulya T. New races of sunflower downy mildew (Plasmopara halstedii) in Germany. Journal of Phytopathology. 1994;142(4):241-4. https://doi.org/10.1111/j.1439-0434.1994.tb04535.x
  21. 21. Patil M, Mayee C. Race identity of Indian Plasmopara halstedii, cause of downy mildew of sunflower; 1991. https://www.cabidigitallibrary.org/doi/full/10.5555/19922314065
  22. 22. Gulya T, Rashid K, Maširevic S. Sunflower diseases, Sunflower technology and production. American Society of Agronomy, Madison, Wisconsin, USA; 1997. p. 834. https://doi.org/10.2134/agronmonogr35.c6
  23. 23. Kallamadi PR, Mulpuri SJB. Inheritance and molecular mapping of powdery mildew (Golovinomyces orontii) resistance gene (s) in sunflower (Helianthus annuus L.). 3 Biotech. 2020;10(5):234. https://doi.org/10.1007/s13205-020-02224-2
  24. 24. Rao SC, Sujatha M, Karuna K, Varaprasad K. Powdery mildew disease in sunflower: A review. The Indian Society of Oilseeds Reseach. 2006;32:111. https://doi.org/10.56739/jor.v32i1.141781
  25. 25. Putt ED, Sackston W. Studies on sunflower rust: I. Some sources of rust resistance. Canadian Journal of Plant Science. 1957;37(1):43-54. https://doi.org/10.4141/cjps57-005
  26. 26. Bushland T, Antonelli E. Reactions of Argentine and Australian sunflower rust differentials to four North American cultures of Puccinia helianthi from North Dakota. Plant Disease. 1986;70:883-6. https://doi.org/10.1094/PD-70-883
  27. 27. Shirshikar SJH. Integrated management of sunflower necrosis disease/manejo integrado de la necrosis del girasol/controle integral de la necrose dutournesol. Integrated Management of Sunflower Necrosis Disease. 2008;31(49):27-34. https://doi.org/10.2298/HEL0849027S
  28. 28. Shirshikar S. Sunflower necrosis disease management with thiomethoxam. Helia. 2010;33(53):63-8. https://doi.org/10.2298/HEL1053063S
  29. 29. Prasada Rao R, Reddy A, Chander Rao S, Varaprasad K, Thirumala-Devi K, Nagaraju MV, et al. Tobacco streak ilarvirus as causal agent of sunflower necrosis disease in India. Journal of Oilseeds Research. 2000;17(2):400-1.
  30. 30. Harvir Singh HS. Thrips incidence and necrosis disease in sunflower, Helianthus annuus L. Journal of Oilseeds Research. 2005;22(1):90-2.
  31. 31. Bhat A, Jain R, Kumar A, Ramiah M, Varma AJAov. Serological and coat protein sequence studies suggest that necrosis disease on sunflower in India is caused by a strain of Tobacco streak ilarvirus. Archives of Virology. 2002;147:651-8. https://doi.org/10.1007/s007050200015
  32. 32. Škoric D. Sunflower breeding for resistance to abiotic and biotic stresses. In: Abiotic and biotic stress in plants-recent advances and future perspectives: IntechOpen; 2016. https://doi.org/10.5772/62159
  33. 33. Livaja M, Unterseer S, Erath W, Lehermeier C, Wieseke R, Plieske J, et al. Diversity analysis and genomic prediction of Sclerotinia resistance in sunflower using a new 25 K SNP genotyping array. Theoretical and Applied Genetics. 2016;129:317-29. https://doi.org/10.1007/s00122-015-2629-3
  34. 34. Qi L, Long Y, Talukder ZI, Seiler GJ, Block CC, Gulya TJ. Genotyping-by-sequencing uncovers the introgression alien segments associated with sclerotinia basal stalk rot resistance from wild species-I. Helianthus argophyllus and H. petiolaris. Frontiers in Genetics. 2016;7:219. https://doi.org/10.3389/fgene.2016.00219
  35. 35. Talukder ZI, Seiler GJ, Song Q, Ma G, Qi L. SNP discovery and QTL mapping of Sclerotinia basal stalk rot resistance in sunflower using genotyping-by-sequencing. The Plant Genome. 2016;9(3):plantgenome2016.03.0035. https://doi.org/10.3835/plantgenome2016.03.0035
  36. 36. Cavanagh C, Morell M, Mackay I, Powell W. From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Current Opinion in Plant Biology. 2008;11(2):215-21. https://doi.org/10.1016/j.pbi.2008.01.002
  37. 37. Dimitrijevic A, Horn R. Sunflower hybrid breeding: from markers to genomic selection. Frontiers in Plant Science. 2018;8:2238. https://doi.org/10.3389/fpls.2017.02238
  38. 38. Meuwissen TH, Hayes BJ, Goddard M. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157(4):1819-29. https://doi.org/10.1093/genetics/157.4.1819
  39. 39. Körösi K, Lázár N, Virányi F. Resistance to downy mildew in sunflower induced by chemical activators. Acta Phytopathologica et Entomologica Hungarica. 2009;44(1):1-9. https://doi.org/10.1556/APhyt.44.2009.1.1
  40. 40. Kallamadi PR, Yadav P, Dandu K, Soni PK, Sankaraneni CR, Bharadwaja KP, et al. Host defense responses during powdery mildew (Golovinomyces latisporus comb. nov.) infection in sunflower (Helianthus annuus L.). Tropical Plant Pathology. 2022;47(4):495-508. https://doi.org/10.1007/s40858-022-00501-4
  41. 41. Liu J, Zhang Y, Meng Q, Shi F, Ma L, Li Y. Physiological and biochemical responses in sunflower leaves infected by Sclerotinia sclerotiorum. Physiological and Molecular Plant Pathology. 2017;100:41-8. https://doi.org/10.1016/j.pmpp.2017.06.001
  42. 42. Liang C, Wang W, Wang J, Ma J, Li C, Zhou F, et al. Identification of differentially expressed genes in sunflower (Helianthus annuus) leaves and roots under drought stress by RNA sequencing. Botanical Studies. 2017;58:1-11. https://doi.org/10.1186/s40529-017-0197-3
  43. 43. Sabetta W, Alba V, Blanco A, Montemurro C. sunTILL: a TILLING resource for gene function analysis in sunflower. Plant Methods. 2011;7:1-13. https://doi.org/10.1186/1746-4811-7-20
  44. 44. Qi L, Gulya T, Seiler GJ, Hulke BS, Vick BA. Identification of resistance to new virulent races of rust in sunflowers and validation of DNA markers in the gene pool. Phytopathology. 2011;101(2):241-9. https://doi.org/10.1094/PHYTO-06-10-0162
  45. 45. Talukder ZI, Underwood W, Misar CG, Seiler GJ, Cai X, Li X, et al. A quantitative genetic study of sclerotinia head rot resistance introgressed from the wild perennial Helianthus maximiliani into cultivated sunflower (Helianthus annuus L.). International Journal of Molecular Sciences. 2022;23(14):7727. https://doi.org/10.3390/ijms23147727
  46. 46. Seiler G. Registration of 13 downy mildew tolerant interspecific sunflower germplasm lines derived from wild annual species. Crop Science. 1991;31(6):1714-6. https://doi.org/10.2135/cropsci1991.0011183X003100060093x
  47. 47. Rojas-Barros P, Jan C-C, Gulya TJ, editors. Transferring powdery mildew resistance genes from wild Helianthus into cultivated sunflower. In: Proceedings of the 27th Sunflower Research Workshop Fargo National Sunflower Association; 2005.
  48. 48. Rieseberg LH, Choi H, Chan R, Spore C. Genomic map of a diploid hybrid species. Heredity. 1993;70(3):285-93. https://doi.org/10.1038/hdy.1993.41
  49. 49. Jan C, Vick B, Miller J, Kahler A, Butler III E. Construction of an RFLP linkage map for cultivated sunflower. Theoretical and Applied Genetics. 1998;96:15-22. https://doi.org/10.1007/s001220050703
  50. 50. Gedil MA, Wye C, Berry S, Segers B, Peleman J, Jones R, et al. An integrated restriction fragment length polymorphism-amplified fragment length polymorphism linkage map for cultivated sunflower. Genome. 2001;44(2):213-21. https://doi.org/10.1139/g00-111
  51. 51. Yu JK, Tang S, Slabaugh MB, Heesacker A, Cole G, Herring M, et al. Towards a saturated molecular genetic linkage map for cultivated sunflower. Crop Science. 2003;43(1):367-87. https://doi.org/10.2135/cropsci2003.3670
  52. 52. Tang S, Kishore VK, Knapp SJ. PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theoretical and Applied Genetics. 2003;107:6-19. https://doi.org/10.1007/s00122-003-1233-0
  53. 53. Brunel D. A microsatellite marker in Helianthus annuus L. Plant Molecular Biology. 1994;24:397-400. https://doi.org/10.1007/BF00020177
  54. 54. Dehmer K, Friedt W. Development of molecular markers for high oleic acid content in sunflower (Helianthus annuus L.). Industrial Crops and Products. 1998;7(2-3):311-5. https://doi.org/10.1016/S0926-6690(97)00063-0
  55. 55. Paniego N, Echaide M, Muñoz M, Fernández L, Torales S, Faccio P, et al. Microsatellite isolation and characterization in sunflower (Helianthus annuus L.). Genome. 2002;45(1):34-43.https://doi.org/10.1139/g01-120
  56. 56. Kiani SP, Talia P, Maury P, Grieu P, Heinz R, Perrault A, et al. Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Science. 2007;172(4):773-87. https://doi.org/10.1016/j.plantsci.2006.12.007
  57. 57. Mandel JR, Nambeesan S, Bowers JE, Marek LF, Ebert D, Rieseberg LH, et al. Association mapping and the genomic consequences of selection in sunflower. PLoS Genetics. 2013;9(3):e1003378. https://doi.org/10.1371/journal.pgen.10033
  58. 58. Filippi CV, Aguirre N, Rivas JG, Zubrzycki J, Puebla A, Cordes D, et al. Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers. BMC Plant Biology. 2015;15:1-12. https://doi.org/10.1186/s12870-014-0360-x
  59. 59. Nakaya A, Isobe SN. Will genomic selection be a practical method for plant breeding? Annals of Botany. 2012;110(6):1303-16. https://doi.org/10.1093/aob/mcs109
  60. 60. Mangin B, Bonnafous F, Blanchet N, Boniface M-C, Bret-Mestries E, Carrère S, et al. Genomic prediction of sunflower hybrids oil content. Frontiers in Plant Science. 2017;8:1633. https://doi.org/10.3389/fpls.2017.01633
  61. 61. Livaja M, Wang Y, Wieckhorst S, Haseneyer G, Seidel M, Hahn V, et al. BSTA: a targeted approach combines bulked segregant analysis with next-generation sequencing and de novo transcriptome assembly for SNP discovery in sunflower. BMC Genomics. 2013;14:1-10. https://doi.org/10.1186/1471-2164-14-628
  62. 62. Muellenborn C, Krause J-H, Cerboncini C. Analysis of differential transcript expression reveals time-dependent leaf responses to Sclerotinia sclerotiorum in wild and cultivated sunflower. Plant Molecular Biology Reporter. 2011;29:597-608. https://doi.org/10.1007/s11105-010-0265-2
  63. 63. Guo S, Zuo Y, Zhang Y, Wu C, Su W, Jin W, et al. Large-scale transcriptome comparison of sunflower genes responsive to Verticillium dahliae. BMC Genomics. 2017;18:1-13. https://doi.org/10.1186/s12864-016-3386-7
  64. 64. Zambelli A, León A, Garcés R. Mutagenesis in sunflower. In: Sunflower. Elsevier; 2015. p. 27-52. https://doi.org/10.1016/B978-1-893997-94-3.50008-8
  65. 65. Qi L, Long Y, Jan C, Ma G, Gulya T. Pl 17 is a novel gene independent of known downy mildew resistance genes in the cultivated sunflower (Helianthus annuus L.). Theoretical and Applied Genetics. 2015;128:757-67. https://doi.org/10.1007/s00122-015-2470-8
  66. 66. Ramazanova SA, Badyanov EV, Guchetl SZ. Validation of microsatellite markers to identify Pl6, Pl8 and Plarg genes that control resistance to Plasmopara halstedii in sunflower. Caspian Journal of Environmental Sciences. 2021;19(5):915-20. https://doi.org/10.22124/CJES.2021.5266
  67. 67. Qi L, Seiler G, Vick B, Gulya T. Genetics and mapping of the R 11 gene conferring resistance to recently emerged rust races, tightly linked to male fertility restoration, in sunflower (Helianthus annuus L.). Theoretical and Applied Genetics. 2012;125:921-32.https://doi.org/10.1007/s00122-012-1883-x
  68. 68. Talukder ZI, Gong L, Hulke BS, Pegadaraju V, Song Q, Schultz Q, et al. A high-density SNP map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12. PLoS One. 2014;9(7):e98628. https://doi.org/10.1371/journal.pone.0098628
  69. 69. Ma G, Song Q, Markell S, Qi L. High-throughput genotyping-by-sequencing facilitates molecular tagging of a novel rust resistance gene, R 15, in sunflower (Helianthus annuus L.). Theoretical and Applied Genetics. 2018;131:1423-32. https://doi.org/10.1007/s00122-018-3087-5
  70. 70. Qi L, Foley M, Cai X, Gulya T. Genetics and mapping of a novel downy mildew resistance gene, Pl 18, introgressed from wild Helianthus argophyllus into cultivated sunflower (Helianthus annuus L.). Theoretical and Applied Genetics. 2016;129:741-52.https://doi.org/10.1007/s00122-015-2662-2
  71. 71. Liu Z, Zhang L, Ma G, Seiler G, Jan C, Qi L. Molecular mapping of the downy mildew and rust resistance genes in a sunflower germplasm line TX16R. Molecular Breeding. 2019;39:1-11. https://doi.org/10.1007/s11032-018-0921-z
  72. 72. Boulos C, Salameh P, Barberger-Gateau P. The AMEL study, a cross sectional population-based survey on aging and malnutrition in 1200 elderly Lebanese living in rural settings: protocol and sample characteristics. BMC Public Health. 2013;13:1-13. https://doi.org/10.1186/1471-2458-13-573
  73. 73. Qi L, Ma G, Seiler G. Registration of two confection sunflower germplasms, HA-DM5 and HA-DM6, resistant to sunflower downy mildew. Journal of Plant Registrations. 2020;14(1):87-91. https://doi.org/10.1002/plr2.20014
  74. 74. Ma G, Markell S, Song Q, Qi L. Genotyping-by-sequencing targeting of a novel downy mildew resistance gene Pl 20 from wild Helianthus argophyllus for sunflower (Helianthus annuus L.). Theoretical and Applied Genetics. 2017;130:1519-29. https://doi.org/10.1007/s00122-017-2906-4
  75. 75. Qi L, Cai X. Characterization and mapping of a downy mildew resistance gene, Pl 36, in sunflower (Helianthus annuus L.). Molecular Breeding. 2022;42(2):8.https://doi.org/10.1007/s11032-022-01280-1
  76. 76. Ma G, Song Q, Li X, Qi L. High-density mapping and candidate gene analysis of Pl 18 and Pl 20 in sunflower by whole-genome resequencing. International Journal of Molecular Sciences. 2020;21(24):9571. https://doi.org/10.3390/ijms21249571
  77. 77. Mohase L. Biochemical events associated with rust resistance in sunflower. University of the Free State; 2003.
  78. 78. Lambrides C, Miller J. Inheritance of rust resistance in a source of MC29 sunflower germplasm. Crop Science. 1994;34(5):1225-30. https://doi.org/10.2135/cropsci1994.0011183X003400050015x
  79. 79. Gong L, Hulke B, Gulya T, Markell S, Qi L. Molecular tagging of a novel rust resistance gene R 12 in sunflower (Helianthus annuus L.). Theoretical and Applied Genetics. 2013;126:93-9. https://doi.org/10.1007/s00122-012-1962-z
  80. 80. Zhang M, Liu Z, Jan C-C. Molecular mapping of a rust resistance gene R 14 in cultivated sunflower line PH 3. Molecular Breeding. 2016;36:1-12. https://doi.org/10.1007/s11032-016-0456-0
  81. 81. Bulos M, Vergani PN, Altieri E. Genetic mapping, marker assisted selection and allelic relationships for the Pu6 gene conferring rust resistance in sunflower. Breeding Science. 2014;64(3):206-12. https://doi.org/10.1270/jsbbs.64.206
  82. 82. Qi L, Talukder Z, Ma G, Li X. Discovery and mapping of two new rust resistance genes, R 17 and R 18, in sunflower using genotyping by sequencing. Theoretical and Applied Genetics. 2021;134:2291-301. https://doi.org/10.1007/s00122-021-03826-x
  83. 83. Tan AS, Jan CC, Gulya TJ. Inheritance of resistance to race 4 of sunflower downy mildew in wild sunflower accessions. Crop Science. 1992;32(4):949-52. https://doi.org/10.2135/cropsci1992.0011183X003200040022x
  84. 84. Dussle CM, Hahn V, Knapp SJ, Bauer E. Pl Arg from Helianthus argophyllus is unlinked to other known downy mildew resistance genes in sunflower. Theoretical and Applied Genetics. 2004;109:1083-6. https://doi.org/10.1007/s00122-004-1722-9
  85. 85. Nikolova L, Shindrova P, Entcheva V. Resistance to diseases, obtained through interspecific hybridization/Resistance a las enfermedades obtenida por la hibridizacion interspecies/Resistance a la malade obtenue par hybridation interspecies. Helia. 2000;23(33):57-64. https://doi.org/10.1515/helia.2000.23.33.57
  86. 86. Encheva J, Köhler H, Friedt W. RAPD analysis of lines derived from interspecific cross Helianthus annuus L.× Helianthus salicifolius. Helia. 2012;35(57):9-18. https://doi.org/10.2298/HEL1257009E
  87. 87. Saliman M, Yang S, Wilson L. Reaction of Helianthus species to Erysiphe cichoracearum. Plant Disease. 1982;66:572-3. https://doi.org/10.1094/PD-66-572
  88. 88. Skoric D. Sunflower breeding. Uljarstvo (Yugoslavia). 1988;25(1).
  89. 89. McCarter S. Reactions of Jerusalem artichoke genotypes to two rusts and powdery mildew. Plant Disease. 1993;77:242-5. https://doi.org/10.1094/PD-77-0242
  90. 90. Dauguet S, Labalette F, Lecomte V, Leflon M, Mestries E. Account of the 17th International Sunflower Conference at Cordoba (Spain), 8-12 June 2008.
  91. 91. Dedic B, Terzic S, Atlagic J, Miladinovic D, Mrda J, Tancic S, et al., editors. Screening perennial Helianthus species for powdery mildew. In: Proceedings, 18th International Sunflower Conference, Mar del Plata & Balcare, Argentina, 27 February-1 March 2012. Paris: International Sunflower Association; 2012.
  92. 92. Seiler G, Marek LF. Germplasm resources for increasing the genetic diversity of global cultivated sunflower. Helia. 2011;34(55):1-20. https://doi.org/10.2298/HEL1155001S
  93. 93. Hahn V. Genetic variation for resistance to Sclerotinia head rot in sunflower inbred lines. Field Crops Research. 2002;77(2-3):153-9. https://doi.org/10.1016/S0378-4290(02)00082-5
  94. 94. Block C, Gulya T, Marek L. Evaluation of wild sunflower species for resistance to Sclerotinia stalk rot. Phytopathology. 2009;99:S13.
  95. 95. Tikhomirov VT, Chiryaev PV. Sources of resistance to diseases in original material of sunflower/Fuentes de resistance a las enfermedades en el material original de girasol/Les sources de resistance aux maladies dans le materie ‘origine du tournesol. Helia. 2005;28(42):101-6. https://doi.org/10.2298/HEL0542101T
  96. 96. Seiler GJ, Gulya TJ, editors. Exploration for wild Helianthus species in North America: challenges and opportunities in the search for global treasures. International Sunflower Conference Proceedings; 2004.
  97. 97. Henn H, Steiner U, Wingender R, Schnabl H. Wildtype sunflower clones: source for resistance against Sclerotinia sclerotiorum (Lib.) de Bary stem infection; 1997.
  98. 98. Block C, Marek L, Gulya T. Identifying resistance to Sclerotinia stalk and root rot in perennial sunflower germplasm. Phytopathology. 2012;102:S4.
  99. 99. Sujatha M, Prabakaran A, Chattopadhyay C. Reaction of wild sunflowers and certain interspecific hybrids to Alternaria helianthin; 1997.

Downloads

Download data is not yet available.