Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Genome editing for biotic and abiotic stress management in banana: A comprehensive review

DOI
https://doi.org/10.14719/pst.8933
Submitted
17 April 2025
Published
31-07-2025
Versions

Abstract

Bananas, including plantains (Musa spp.), are among the most widely cultivated fruit crops globally. However, various biotic and abiotic stresses hamper their production. The triploid chromosomal nature of most cultivated banana varieties poses significant challenges to conventional breeding efforts. Gene editing has recently emerged as a powerful tool to address these challenges. Among available technologies, CRISPR/Cas9 stands out for its precision, efficiency and relatively short development time. The CRISPR/Cas9 system operates through an RNA-guided endonuclease mechanism that introduces double-strand breaks (DSBs) at specific genomic locations. These targeted modifications result in heritable changes, making it a promising approach for developing stress-resistant banana varieties. CRISPR/Cas9 has been employed to manage biotic stress by combating bacterial diseases such as Xanthomonas Wilt (BXW) and viral infections including Banana Streak Virus (BSV) and Banana Bunchy Top Virus (BBTV). This involves editing susceptibility genes like Musa DMR6, or enhancing the expression of defense-related genes such as chitinase. For abiotic stress tolerance, genome editing and gene overexpression techniques have been utilized to increase resilience to environmental factors like drought, salinity and cold. Additionally, disruption of the 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) gene crucial in ethylene biosynthesis has been used to reduce ethylene production, thereby extending the shelf life of banana fruits. This review explores the potential of CRISPR/Cas9 and related gene editing technologies as transformative tools in improving stress tolerance in bananas, ultimately contributing to sustainable cultivation and global food security.

References

  1. Heslop-Harrison JS, Schwarzacher T. Domestication, genomics and the future for banana. Ann Bot. 2007;100(5):1073-84. https://doi.org/10.1093/aob/mcm191
  2. 2. OECD, FAO. OECD-FAO agricultural outlook 2022-2031; 2022.
  3. 3. Vignesh M, Selvakumar R, Azhagesan R. Marketing strategy and performance of banana in Kanniyakumari district of Tamil Nadu. Pharma Innov. 2023;12(8):1717-21.
  4. 4. Resmi L, Ratna Kumari RK, Bhat KV, Nair AS. Molecular characterization of genetic diversity and structure in South Indian Musa cultivars. Int J Bot. 2011;7(4):274-82. https://doi.org/10.3923/ijb.2011.274.282
  5. 5. Pereira A, Maraschin M. Banana (Musa spp) from peel to pulp: ethnopharmacology, source of bioactive compounds and its relevance for human health. J Ethnopharmacol. 2015;160:149-63. https://doi.org/10.1016/j.jep.2014.11.008
  6. 6. Tripathi JN, Ntui VO, Ron M, Muiruri SK, Britt A, Tripathi L. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun Biol. 2019;2(1):46. https://doi.org/10.1038/s42003-019-0288-7
  7. 7. Tripathi L, Ntui VO, Tripathi JN. Control of bacterial diseases of banana using CRISPR/Cas-based gene editing. Int J Mol Sci. 2022;23(7):3619. https://doi.org/10.3390/ijms23073619
  8. 8. Petolino JF. Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Biol Plant. 2015;51:1-8. https://doi.org/10.1007/s11627-015-9663-3
  9. 9. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636-46. https://doi.org/10.1038/nrg2842
  10. 10. Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA. 1996;93(3):1156-60. https://doi.org/10.1073/pnas.93.3.1156
  11. 11. Swarthout JT, Raisinghani M, Cui X. Zinc finger nucleases: a new era for transgenic animals. Ann Neurosci. 2011;18(1):25. https://doi.org/10.5214/ans.0972.7531.1118109
  12. 12. Becker S, Boch J. TALE and TALEN genome editing technologies. Gene Genome Edit. 2021;2:100007. https://doi.org/10.1016/j.ggedit.2021.100007
  13. 13. Wright DA, Li T, Yang B, Spalding MH. TALEN-mediated genome editing: prospects and perspectives. Biochem J. 2014;462(1):15-24. https://doi.org/10.1042/BJ20140295
  14. 14. Malzahn A, Lowder L, Qi Y. Plant genome editing with TALEN and CRISPR. Cell Biosci. 2017;7:1-8. https://doi.org/10.1186/s13578-017-0148-4
  15. 15. Chen L, Tang L, Xiang H, Jin L, Li Q, Dong Y, et al. Advances in genome editing technology and its promising application in evolutionary and ecological studies. Gigascience. 2014;3(1):2047-17X. https://doi.org/10.1186/2047-217X-3-24
  16. 16. Jacquier A, Dujon B. An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell. 1985;41(2):383-94. https://doi.org/10.1016/S0092-8674(85)80011-8
  17. 17. Colleaux L, d'Auriol L, Galibert F, Dujon B. Recognition and cleavage site of the intron-encoded omega transposase. Proc Natl Acad Sci USA. 1988;85(16):6022-6. https://doi.org/10.1073/pnas.85.16.6022
  18. 18. Thierry A, Dujon B. Nested chromosomal fragmentation in yeast using the meganuclease I-Sce I: a new method for physical mapping of eukaryotic genomes. Nucleic Acids Res. 1992;20(21):5625-31. https://doi.org/10.1093/nar/20.21.5625
  19. 19. Langner T, Kamoun S, Belhaj K. CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol. 2018;56(1):479-512. https://doi.org/10.1146/annurev-phyto-080417-050158
  20. 20. Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397-405. https://doi.org/10.1016/j.tibtech.2013.04.004
  21. 21. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326(5959):1509-12. https://doi.org/10.1126/science.1178811
  22. 22. Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, et al. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther. 2011;11(1):11-27. https://doi.org/10.2174/156652311794520111
  23. 23. Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol. 2016;34(9):933-41. http://dx.doi.org/10.1038/nbt.3659
  24. 24. Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012;482(7385):331-8. https://doi.org/10.1038/nature10886
  25. 25. Pacesa M, Lin CH, Cléry A, Saha A, Arantes PR, Bargsten K, et al. Structural basis for Cas9 off-target activity. Cell. 2022;185(22):4067-81. https://doi.org/10.1016/j.cell.2022.09.026
  26. 26. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827-32. https://doi.org/10.1038/nbt.2647
  27. 27. Zischewski J, Fischer R, Bortesi L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv. 2017;35(1):95-104. https://doi.org/10.1016/j.biotechadv.2016.12.003
  28. 28. Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud JB, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17:148. https://doi.org/10.1186/S13059-016-1012-2
  29. 29. Vouillot L, Thélie A, Pollet N. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda). 2015;5(3):407-15. https://doi.org/10.1534/g3.114.015834
  30. 30. Brooks C, Nekrasov V, Lippman ZB, Van Eck J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 2014;166(3):1292-7. https://doi.org/10.1104/pp.114.247577
  31. 31. Jiang F, Doudna JA. CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys. 2017;46(1):505-29. https://doi.org/10.1146/annurev-biophys-062215-010822
  32. 32. DeWitt MA, Corn JE, Carroll D. Genome editing via delivery of Cas9 ribonucleoprotein. Methods. 2017;121:9-15. https://doi.org/10.1016/j.ymeth.2017.04.003
  33. 33. Zhang S, Shen J, Li D, Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics. 2021;11(2):614. https://doi.org/10.7150/thno.47007
  34. 34. Subburaj S, Zanatta CB, Nunn JA, Hoepers AM, Nodari RO, Agapito-Tenfen SZ. A DNA-free editing platform for genetic screens in soybean via CRISPR/Cas9 ribonucleoprotein delivery. Front Plant Sci. 2022;13:939997. https://doi.org/10.3389/fpls.2022.939997
  35. 35. Halat M, Klimek-Chodacka M, Orleanska J, Baranska M, Baranski R. Electronic circular dichroism of the cas9 protein and grna: Cas9 ribonucleoprotein complex. Int J Mol Sci. 2021;22(6):2937. https://doi.org/10.3390/ijms22062937
  36. 36. Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, et al. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci. 2016;7:1904. https://doi.org/10.3389/fpls.2016.01904
  37. 37. Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, et al. Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep. 2016;6(1):31481. https://doi.org/10.1038/srep31481
  38. 38. Yu Y, Pan Z, Wang X, Bian X, Wang W, Liang Q, et al. Targeting of SPCSV-RNase3 via CRISPR-Cas13 confers resistance against sweet potato virus disease. Mol Plant Pathol. 2022;23(1):104-17. https://doi.org/10.1111/mpp.13146
  39. 39. Zhou J, Wang G, Liu Z. Efficient genome editing of wild strawberry genes, vector development and validation. Plant Biotechnol J. 2018;16(11):1868-77. https://doi.org/10.1111/pbi.12922
  40. 40. Wang X, Tu M, Wang D, Liu J, Li Y, Li Z, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J. 2018;16(4):844-55. https://doi.org/10.1111/pbi.12832
  41. 41. Ren C, Liu X, Zhang Z, Wang Y, Duan W, Li S, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep. 2016;6(1):32289. https://doi.org/10.1038/srep32289
  42. 42. Gomez MA, Berkoff KC, Gill BK, Iavarone AT, Lieberman SE, Ma JM, et al. CRISPR-Cas9-mediated knockout of CYP79D1 and CYP79D2 in cassava attenuates toxic cyanogen production. Front Plant Sci. 2023;13:1079254. https://doi.org/10.3389/fpls.2022.1079254
  43. 43. Jia H, Zhang Y, Orbovic V, Xu J, White FF, Jones JB, et al. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J. 2017;15(7):817-23. https://doi.org/10.1111/pbi.12677
  44. 44. Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ. Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Front Plant Sci. 2017;8:1780. https://doi.org/10.3389/fpls.2017.01780
  45. 45. Subburaj S, Chung SJ, Lee C, Ryu SM, Kim DH, Kim JS, et al. Site-directed mutagenesis in Petunia×hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Rep. 2016;35:1535-44. https://doi.org/10.1007/s00299-016-1937-7
  46. 46. Zhang B, Yang X, Yang C, Li M, Guo Y. Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in petunia. Sci Rep. 2016;6(1):20315. https://doi.org/10.1038/srep20315
  47. 47. Feng J, Cheng L, Zhu Z, Yu F, Dai C, Liu Z, et al. GRAS transcription factor LOSS OF AXILLARY MERISTEMS is essential for stamen and runner formation in wild strawberry. Plant Physiol. 2021;186(4):1970-84. https://doi.org/10.1093/plphys/kiab184
  48. 48. Pi M, Hu S, Cheng L, Zhong R, Cai Z, Liu Z, et al. The MADS-box gene FveSEP3 plays essential roles in flower organogenesis and fruit development in woodland strawberry. Hortic Res. 2021;8:247. https://doi.org/10.1038/s41438-021-00673-1
  49. 49. Varkonyi-Gasic E, Wang T, Voogd C, Jeon S, Drummond RS, Gleave AP, et al. Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnol J. 2019;17(5):869-80. https://doi.org/10.1111/pbi.13021
  50. 50. Kishi-Kaboshi M, Aida R, Sasaki K. Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant Cell Physiol. 2017;58(2):216-26. https://doi.org/10.1093/pcp/pcw222
  51. 51. Parajuli S, Huo H, Gmitter FG Jr, Duan Y, Luo F, Deng Z. Editing the CsDMR6 gene in citrus results in resistance to the bacterial disease citrus canker. Hortic Res. 2022;9:uhac082. https://doi.org/10.1093/hr/uhac082
  52. 52. Jung JH, Altpeter F. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol. 2016;92:131-42. https://doi.org/10.1007/s11103-016-0499-y
  53. 53. Wang Z, Wang S, Li D, Zhang Q, Li L, Zhong C, et al. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit. Plant Biotechnol J. 2018;16(8):1424-33. https://doi.org/10.1111/pbi.12884
  54. 54. Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, Chevreau E. Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Front Plant Sci. 2019;10:40. https://doi.org/10.3389/fpls.2019.00040
  55. 55. Wang L, Chen S, Peng A, Xie Z, He Y, Zou X. CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to Xanthomonas citri subsp. citri in Wanjincheng orange (Citrus sinensis (L.) Osbeck). Plant Biotechnol Rep. 2019;13:501-10. https://doi.org/10.1007/s11816-019-00556-x
  56. 56. Peng A, Chen S, Lei T, Xu L, He Y, Wu L, et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J. 2017;15(12):1509-19. https://doi.org/10.1111/pbi.12733
  57. 57. Nicolia A, Proux-Wéra E, Åhman I, Onkokesung N, Andersson M, Andreasson E, et al. Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. J Biotechnol. 2015;204:17-24. https://doi.org/10.1016/j.jbiotec.2015.03.021
  58. 58. Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, et al. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J. 2016;14(1):169-76. https://doi.org/10.1111/pbi.12370
  59. 59. Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, et al. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol. 2016;17(7):1140-53. https://doi.org/10.1111/mpp.12375
  60. 60. Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz MM. Engineering resistance against tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal Behav. 2018;13(10):e1525996. https://doi.org/10.1080/15592324.2018.152599
  61. 61. Xu Y, Liu J, Jia C, Hu W, Song S, Xu B, et al. Overexpression of a banana aquaporin gene MaPIP1;1 enhances tolerance to multiple abiotic stresses in transgenic banana and analysis of its interacting transcription factors. Front Plant Sci. 2021;12:699230. https://doi.org/10.3389/fpls.2021.699230
  62. 62. Low YC, Lawton MA, Di R. Validation of barley 2OGO gene as a functional orthologue of Arabidopsis DMR6 gene in Fusarium head blight susceptibility. Sci Rep. 2020;10(1):9935. https://doi.org/10.1038/s41598-020-67006-5
  63. 63. Tripathi JN, Ntui VO, Shah T, Tripathi L. CRISPR/Cas9-mediated editing of DMR6 orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease. Plant Biotechnol J. 2021;19(7):1291. https://doi.org/10.1111/pbi.13614
  64. 64. Kovács G, Sági L, Jacon G, Arinaitwe G, Busogoro JP, Thiry E, et al. Expression of a rice chitinase gene in transgenic banana (‘Gros Michel’, AAA genome group) confers resistance to black leaf streak disease. Transgenic Res. 2013;22:117-30. https://doi.org/10.1007/s11248-012-9631-1
  65. 65. Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M, et al. Enhanced resistance to blast (Magnaporthe grisea) in transgenic Japonica rice by constitutive expression of rice chitinase. Theor Appl Genet. 1999;99:383-90. https://doi.org/10.1007/s001220051248
  66. 66. Hood EE, Gelvin SB, Melchers LS, Hoekema A. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 1993;2:208-18. https://doi.org/10.1007/BF01977351
  67. 67. Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA. MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta. 2003;216:587-96. https://doi.org/10.1007/s00425-002-0918-y
  68. 68. Vishnevetsky J, White TL, Palmateer AJ, Flaishman M, Cohen Y, Elad Y, et al. Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Res. 2011;20:61-72. https://doi.org/10.1007/s11248-010-9392-7
  69. 69. Atkinson HJ, Grimwood S, Johnston K, Green J. Prototype demonstration of transgenic resistance to the nematode Radopholus similis conferred on banana by a cystatin. Transgenic Res. 2004;13:135-42. https://doi.org/10.1023/B:TRAG.0000026070.15253.88
  70. 70. Jones DR, editor. Handbook of diseases of banana, abaca and enset. CAB International; 2019.
  71. 71. Dale JL. Banana bunchy top: an economically important tropical plant virus disease. Adv Virus Res. 1987;33:301-25. https://doi.org/10.1016/S0065-3527(08)60321-8
  72. 72. Harding RM, Burns TM, Dale JL. Virus-like particles associated with banana bunchy top disease contain small single-stranded DNA. J Gen Virol. 1991;72(2):225-30. https://doi.org/10.1099/0022-1317-72-2-225
  73. 73. Loebenstein G, Thottappilly G, editors. Virus and virus-like diseases of major crops in developing countries. Springer Science & Business Media; 2013.
  74. 74. Elayabalan S, Kalaiponmani K, Subramaniam S, Selvarajan R, Panchanathan R, Muthuvelayoutham R, et al. Development of Agrobacterium-mediated transformation of highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease. World J Microbiol Biotechnol. 2013;29:589-96. https://doi.org/10.1007/s11274-012-1214-z
  75. 75. Shekhawat UK, Ganapathi TR, Hadapad AB. Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. J Gen Virol. 2012;93(8):1804-13. https://doi.org/10.1099/vir.0.041871-0
  76. 76. Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Cermák T, et al. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J. 2018;16(11):1918-27. https://doi.org/10.1111/pbi.12927
  77. 77. Chabannes M, Baurens FC, Duroy PO, Bocs S, Vernerey MS, Rodier-Goud M, et al. Three infectious viral species lying in wait in the banana genome. J Virol. 2013;87(15):8624-37. https://doi.org/10.1128/jvi.00899-13
  78. 78. Iskra-Caruana ML, Chabannes M, Duroy PO, Muller E. A possible scenario for the evolution of Banana streak virus in banana. Virus Res. 2014;186:155-62. https://doi.org/10.1016/j.virusres.2014.01.005
  79. 79. Wambulwa MC, Wachira FN, Karanja LS, Kiarie SM, Muturi SM. The influence of host and pathogen genotypes on symptom severity in banana streak disease. African J Biotechnol. 2013;12(1):27-31. https://doi.org/10.5897/AJB12.2536
  80. 80. Daniells JW, Geering AD, Bryde NJ, Thomas JE. The effect of Banana streak virus on the growth and yield of dessert bananas in tropical Australia. Ann Appl Biol. 2001;139(1):51-60. https://doi.org/10.1111/j.1744-7348.2001.tb00130.x
  81. 81. Selvarajan R, Balasubramanian V. Genetic analysis of banana bract mosaic virus and its management. In: Plant RNA viruses. Academic Press; 2023. p. 495-523. https://doi.org/10.1016/B978-0-323-95339-9.00012-0
  82. 82. Rodoni BC, Ahlawat YS, Varma A, Dale JL, Harding RM. Identification and characterization of banana bract mosaic virus in India. Plant Dis. 1997;81(6):669-72. https://doi.org/10.1094/PDIS.1997.81.6.669
  83. 83. Selvarajan R, Balasubramanian V, Sheeba MM, Raj Mohan R, Mustaffa MM. Virus-indexing technology for production of quality banana planting material: a boon to the tissue-culture industry and banana growers in India. In: V International Symposium on Banana: ISHS-ProMusa Symposium on Global Perspectives on Asian Challenges. ISHS Acta Horticulturae 897; 2009. p. 463-9. https://doi.org/10.17660/ActaHortic.2011.897.63
  84. 84. Jadhav PR, Ekatpure SC, Soni KB, Swapna A, Lekshmi RS, Wagh YS, et al. Silencing of coat protein gene using IhpRNA develops resistance to banana bract mosaic virus in Musa acuminata (AAA) cv. Grand Naine. Trop Plant Biol. 2024;17(3):196-203. https://doi.org/10.1007/s12042-024-09360-6
  85. 85. Feng X, Chen F, Liu W, Thu MK, Zhang Z, Chen Y, et al. Molecular characterization of MaCCS, a novel copper chaperone gene involved in abiotic and hormonal stress responses in Musa acuminata cv. Tianbaojiao. Int J Mol Sci. 2016;17(4):441. https://doi.org/10.3390/ijms17040441
  86. 86. Meer L, Mumtaz S, Labbo AM, Khan MJ, Sadiq I. Genome-wide identification and expression analysis of calmodulin-binding transcription activator genes in banana under drought stress. Sci Hort. 2019;244:10-4. https://doi.org/10.1016/j.scienta.2018.09.022
  87. 87. Miao H, Sun P, Liu Q, Miao Y, Liu J, Zhang K, et al. Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana. Sci Rep. 2017;7(1):3536. https://doi.org/10.1038/s41598-017-03872-w
  88. 88. Mattos-Moreira LA, Ferreira CF, Amorim EP, Pirovani CP, de Andrade EM, Filho MA, et al. Differentially expressed proteins associated with drought tolerance in bananas (Musa spp.). Acta Physiol Plant. 2018;40:1-4. https://doi.org/10.1007/s11738-018-2638-3
  89. 89. Hu W, Wang L, Tie W, Yan Y, Ding Z, Liu J, et al. Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana. Sci Rep. 2016;6(1):30203. https://doi.org/10.1038/srep30203
  90. 90. Wong GR, Mazumdar P, Lau SE, Harikrishna JA. Ectopic expression of a Musa acuminata root hair defective 3 (MaRHD3) in Arabidopsis enhances drought tolerance. J Plant Physiol. 2018;231:219-33. https://doi.org/10.1016/j.jplph.2018.09.018
  91. 91. Razzaq MK, Akhter M, Ahmad RM, Cheema KL, Hina A, Karikari B, et al. CRISPR-Cas9 based stress tolerance: New hope for abiotic stress tolerance in chickpea (Cicer arietinum). Mol Biol Rep. 2022;49(9):8977-85. https://doi.org/10.1007/s11033-022-07391-4
  92. 92. Ogata T, Ishizaki T, Fujita M, Fujita Y. CRISPR/Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice. PLoS One. 2020;15(12):e0243376. https://doi.org/10.1371/journal.pone.0243376
  93. 93. Grondin A, Mauleon R, Vadez V, Henry A. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.). Plant Cell Environ. 2016;39(2):347-65. https://doi.org/10.1111/pce.12616
  94. 94. Xu Y, Hu W, Liu J, Song S, Hou X, Jia C, et al. An aquaporin gene MaPIP2-7 is involved in tolerance to drought, cold and salt stresses in transgenic banana (Musa acuminata L.). Plant Physiol Biochem. 2020;147:66-76. https://doi.org/10.1016/j.plaphy.2019.12.011
  95. 95. Xu Y, Hu W, Liu J, Zhang J, Jia C, Miao H, et al. A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses. BMC Plant Biol. 2014;14:1-4. http://www.biomedcentral.com/1471-2229/14/59
  96. 96. Inaba A, Liu X, Yokotani N, Yamane M, Lu WJ, Nakano R, et al. Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit. J Exp Bot. 2007;58(5):1047-57. https://doi.org/10.1093/jxb/erl265
  97. 97. Hu C, Sheng O, Deng G, He W, Dong T, Yang Q, et al. CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane-1-carboxylate oxidase 1) promotes the shelf life of banana fruit. Plant Biotechnol J. 2021;19(4):654. https://doi.org/10.1111/pbi.13534
  98. 98. Batista LG, Mello VH, Souza AP, Margarido GR. Genomic prediction with allele dosage information in highly polyploid species. Theor Appl Genet. 2022;1-7. https://doi.org/10.1101/2021.06.22.449437
  99. 99. Ansari WA, Chandanshive SU, Bhatt V, Nadaf AB, Vats S, Katara JL, et al. Genome editing in cereals: approaches, applications and challenges. International J Mol Sci. 2020;21(11):4040. https://doi.org/10.3390/ijms21114040
  100. 100. Cenci A, Guignon V, Roux N, Rouard M. Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots. Plant Mol Biol. 2014;85(1):63-80. https://doi.org/10.1007/s11103-013-0169-2

Downloads

Download data is not yet available.