Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Exploring the future of nano-physiochemistry: A review of current trends and prospects

DOI
https://doi.org/10.14719/pst.9006
Submitted
21 April 2025
Published
10-09-2025
Versions

Abstract

In the last decade, nanotechnology has garnered significant interest from both academia and business, serving a crucial function in the advancement of medical, biological and economical fields. The chemical and physical (nano-physiochemistry) functionalization of textiles by nanotechnology has initiated a new stage in sophisticated materials characterized by enhanced characteristics and functionalities. Nano-physiochemistry is an area of knowledge focused on obtaining and characterizing materials at the nanometric scale. This subdiscipline has made valuable contributions to research, industry, technology and environment, including applications in electronics, nanodevices and systems, composite materials, biotechnology, medicine and the textile industry. The aim of this study is to critically review the current advancements in nano-physiochemistry, exploring its future directions, emerging trends and potential applications. The present study also includes an overview of the chemical and physical methods for the preparation of nanomaterials, along with a discussion of various characterization techniques employed to analyze these materials. In conclusion, this review highlights the advancements in nano-physiochemistry, focusing on its future directions and potential applications. It emphasizes the role of chemical and physical methods in the preparation of nanomaterials and the importance of various characterization techniques in understanding their properties. Ongoing research is essential to optimize these methods and explore new prospects for the broader application of nano-physiochemistry.

References

  1. 1. Atkins P, De Paula J. Elements of physical chemistry. Oxford University Press; 2013.
  2. 2. Tiwari P, Kane SN, Verma R, Tatarchuk T, Mazaleyrat F. Nanochemistry, biotechnology, nanomaterials and their applications. In: Springer proceedings in physics. Springer International Publishing. 2019;214:431–42. https://doi.org/10.1007/978-3-319-92567-7
  3. 3. Borisenko VE, Ossicini S. What is what in the nanoworld: A handbook on nanoscience and nanotechnology. John Wiley & Sons; 2013. https://doi.org/10.1002/9783527623334
  4. 4. Fesenko O, Yatsenko L. Nanochemistry, biotechnology, nanomaterials and their applications. Springer International Publishing; 2018. https://doi.org/10.1007/978-3-319-92567-7
  5. 5. Sudin NAS, Daud N, Mustapa IR, Zorah M. Thermomechanical properties and thermal behavior of poly (lactic acid) composites reinforced with TiO2 nanofiller. Solid State Phenomena. 2021;317:341–50. https://doi.org/10.4028/www.scientific.net/SSP.317.341
  6. 6. Samawi KA, Abdulrazzaq SJ, Zorah M, Al-Bahrani M, Mahmoud HAMA, Taki AG, et al. MoS₂/graphdiyne nanotube/MXene 3D-interconnected ternary aerogel: A high-performance electrocatalyst for hydrogen evolution reaction. J Solid State Chem. 2024;334:124690. https://doi.org/10.1016/j.jssc.2024.124690
  7. 7. Gökçay B, Berna A. Nanotechnology, nanomedicine; ethical aspects. Rev Rom Bioet. 2015;13(3).
  8. 8. Allhoff F, Lin P, Moor JH, Weckert J. Nanoethics: the ethical and social implications of nanotechnology. Hoboken: John Wiley & Sons; 2007. p. 416
  9. 9. Daniel CE, Legault GA, Bernier L. Nanotechnology regulation, the French national debate and social dialogue: Nanoworld, great normative expectations? Lex Electronica. 2015;20:92.
  10. 10. Stephan S, Mader K. Bridges between science, society and policy: technology assessment methods and impacts. Berlin: Springer Science & Business Media; 2013. https://doi.org/10.1007/978-3-662-06171-8
  11. 11. Rashid MK, Ali BM, Zorah M, Al-Musawi TJ. Experimental investigation of the effects of grooves in Fe2O4/water nanofluid pool boiling. Fluids. 2024;9(5):110. https://doi.org/10.3390/fluids9050110
  12. 12. Feynman R. There’s plenty of room at the bottom. In: Feynman and computation. CRC Press; 2018. p. 63–76 https://doi.org/10.1201/9780429500459-7
  13. 13. Bensaude-Vincent B. Two cultures of nanotechnology? In: Nanotechnology challenges: implications for philosophy, ethics and society. World Scientific; 2006. p. 7–28 https://doi.org/10.1142/9789812773975_0002
  14. 14. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules. 2019;25(1):112. https://doi.org/10.3390/molecules25010112
  15. 15. Li Z, Liu Z, Sun H, Gao C. Superstructured assembly of nanocarbons: fullerenes, nanotubes and graphene. Chem Rev. 2015;115(15):7046–117. https://doi.org/10.1021/cr500411z
  16. 16. Kaplan S, Radin J. Bounding an emerging technology: Para-scientific media and the Drexler-Smalley debate about nanotechnology. Soc Stud Sci. 2011;41(4):457–85. https://doi.org/10.1177/0306312711402722
  17. 17. Sudin NAS, Mustapa IR, Daud N, Zorah M. Thermomechanical, crystallization and melting behavior of plasticized poly (lactic acid) nanocomposites. Solid State Phenomena. 2021;317:351–60. https://doi.org/10.4028/www.scientific.net/SSP.317.351
  18. 18. Bueno O. The Drexler-Smalley debate on nanotechnology: incommensurability at work? In: Nanotechnology challenges: Implications for philosophy, ethics and society. World Scientific; 2006. p. 29–48 https://doi.org/10.1142/9789812773975_0003
  19. 19. Mangolini L. Synthesis, properties and applications of silicon nanocrystals. J Vac Sci Technol B. 2013;31(2). https://doi.org/10.1116/1.4794789
  20. 20. Walkey CD. The biological identity of nanoparticles. PhD [thesis]. Canada: University of Toronto; 2014. https://doi.org/10.1038/s41565-021-00860-0
  21. 21. Klabunde KJ, Sergeev GB. Nanochemistry. 2nd ed. Newnes; 2013.
  22. 22. Mudhafara M, Alsailawic HA, Zainold I, Zorahe M, Abdulraheemf MN, Hasang MM, et al. Extraction, identification of chemical constituents and in vitro evaluation against cells and bacterial pathogens of the leaves of Polyalthia rumphii. J Med Pharm Chem Res. 2024;6:927–43. https://doi.org/10.48309/JMPCR.2024.428146.1046
  23. 23. Cademartiri L, Ozin GA. Concepts of nanochemistry. Hoboken: John Wiley & Sons; 2009. p. 282
  24. 24. Chen G, Seo J, Yang C, Prasad PN. Nanochemistry and nanomaterials for photovoltaics. Chem Soc Rev. 2013;42(21):8304–38. https://doi.org/10.1039/C3CS60152F
  25. 25. Mudhafar M, Zainol I, Abd MY, Alsailawi HA, Ghazaly NM, Hussein RM, et al. The effect of fish collagen on the silver nanoparticles sizes and shapes using modified microwave-assisted green synthesis method and their antibacterial activities. Heliyon. 2024;10(12). https://doi.org/10.1016/j.heliyon.2024.e32837
  26. 26. Sreenivasulu D, Dasari C. Fundamental ideas of nanomaterials and nanotechnology. In: Proceedings of National Seminar; 2017 Mar; Siliguri, India. Siliguri: Roshan Publications; 2017. p. 90–3. https://doi.org/10.1007/978-981-99-6649-3_1
  27. 27. Shanmugam S. Nanotechnology. Chennai: MJP Publisher; 2019. p. 12
  28. 28. Yang G. Synthesis, properties and applications of carbyne nanocrystals. Mater Sci Eng R Rep. 2022;151:100692. https://doi.org/10.1016/j.mser.2021.100692
  29. 29. García-López EI, Liotta LF, Marcì G. Preparation of photocatalysts by chemical methodologies. In: Materials science in photocatalysis. Elsevier; 2021. p. 13–36 https://doi.org/10.1016/B978-0-12-821859-4.00006-4
  30. 30. Pedersen H, Elliott SD. Studying chemical vapor deposition processes with theoretical chemistry. Theor Chem Acc. 2014;133:1–10. https://doi.org/10.1007/s00214-014-1476-7
  31. 31. Cruz-Alonso M, Fernández B, Álvarez L, González-Iglesias H, Traub H, Jakubowski N, et al. Quantitative imaging of specific proteins in the human retina by laser ablation ICPMS using bioconjugated metal nanoclusters as labels. Anal Chem. 2018;90(20):12145–51. https://doi.org/10.1021/acs.analchem.8b02724
  32. 32. Bäuerle D. Laser processing and chemistry. Springer Science & Business Media; 2013. https://doi.org/10.1007/978-3-642-82381-7
  33. 33. Zorah M, Mustapa IR, Daud N, Nahida JH, Sudin NAS. Effects of tributyl citrate plasticizer on thermomechanical attributes of poly lactic acid. J Adv Res Fluid Mech Therm Sci. 2019;62(2):274–84.
  34. 34. Saeed M, Alshammari Y, Majeed SA, Al-Nasrallah E. Chemical vapour deposition of graphene -synthesis, characterisation and applications: A review. Molecules. 2020;25(17):3856. https://doi.org/10.3390/molecules25173856
  35. 35. Sher F, Ziani I, Hameed M, Ali S, Sulejmanović J. Advanced nanomaterials design and synthesis for accelerating sustainable biofuels production–A review. Curr Opin Green Sustain Chem. 2024:100925. https://doi.org/10.1016/j.cogsc.2024.100925
  36. 36. Ghosh V, Lonhare A. Response surface methodology: A statistical tool to optimize process parameters (quantitative data) to maximize the microbial biomass and their bioactive metabolites. Ind Manuf Des Quant Qual Anal. 2024:139–71. https://doi.org/10.1002/9781394212668.ch5
  37. 37. Istiqomah A, Saputra OA, Firdaus M, Kusumaningsih T. Response surface methodology as an excellent tool for optimizing sustainable food packaging: A review. J Biosyst Eng. 2024:1–9. https://doi.org/10.1007/s42853-024-00243-y
  38. 38. Popok VN, Kylián O. Gas-phase synthesis of functional nanomaterials. Appl Nano. 2020;1(1):4. https://doi.org/10.3390/applnano1010004
  39. 39. Karakaya YH. Mass spectrometric gas phase diagnostics in particle forming flames. PhD [thesis]. Germany: Universität Duisburg-Essen; 2021. https://doi.org/10.1016/j.pecs.2021.100927
  40. 40. Li L, Sun R, Zheng R. Tunable morphology and functionality of multicomponent self-assembly: A review. Mater Des. 2021;197:109209. https://doi.org/10.1016/j.matdes.2020.109209
  41. 41. Dams M, Dores-Sousa JL, Lamers RJ, Treumann A, Eeltink S. High-resolution nano-liquid chromatography with tandem mass spectrometric detection for the bottom-up analysis of complex proteomic samples. Chromatographia. 2019;82:101–10. https://doi.org/10.1007/s10337-018-3647-5
  42. 42. El-Naggar ME, Shoueir K. Recent advances in polymer/metal/metal oxide hybrid nanostructures for catalytic applications: A review. J Environ Chem Eng. 2020;8(5):104175. https://doi.org/10.1016/j.jece.2020.104175
  43. 43. de Jong KP, editor. Synthesis of solid catalysts. Weinheim: Wiley-VCH; 2009. p. 422
  44. 44. Pierre AC, editor. Introduction to sol-gel processing. New York: Springer Science+Business Media; 1998. p. 597–685 https://doi.org/10.1007/978-1-4615-5659-6
  45. 45. Mudhafar M, Zainol I, Alsailawic HA, Karhib MM, Zorah M, Alnagdi FH, et al. Bioactive chemical constituents of three crude extracts of Polyalthia sclerophylla using GC-mass and phytochemical screening and their antibacterial and cytotoxicity activities. Eurasian Chem Commun. 2023;5(8):675–90. https://doi.org/10.22034/ecc.2023.387999.1602
  46. 46. Aegerter MA, Almeida R, Soutar A, Tadanaga K, Yang H, Watanabe T. Coatings made by sol–gel and chemical nanotechnology. J Solgel Sci Technol. 2008;47:203–36. https://doi.org/10.1007/s10971-008-1761-9
  47. 47. Gradzielski M, Duvail M, de Molina PM, Simon M, Talmon Y, Zemb T. Using microemulsions: formulation based on knowledge of their mesostructure. Chem Rev. 2021;121(10):5671–740. https://doi.org/10.1021/acs.chemrev.0c00812
  48. 48. Karunaratne DN, Pamunuwa G, Ranatunga U. Introductory chapter: Microemulsions. In: Properties and uses of microemulsions. IntechOpen; 2017. https://doi.org/10.5772/intechopen.68823
  49. 49. Sharma G, Kumar D, Kumar A, Al-Muhtaseb AA, Pathania D, Naushad M, et al. Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review. Mater Sci Eng C. 2017;71:1216–30. https://doi.org/10.1016/j.msec.2016.11.002
  50. 50. Xu C, Anusuyadevi PR, Aymonier C, Luque R, Marre S. Nanostructured materials for photocatalysis. Chem Soc Rev. 2019;48(14):3868–902. https://doi.org/10.1039/C9CS00102F
  51. 51. Omar S, Abu-Reziq R. Highly active ruthenium catalyst supported on magnetically separable mesoporous organosilica nanoparticles. Appl Sci. 2020;10(17):5769. https://doi.org/10.3390/app10175769
  52. 52. Ikram M, Rashid M, Haider A, Naz S, Haider J, Raza A, et al. A review of photocatalytic characterization and environmental cleaning, of metal oxide nanostructured materials. Sustain Mater Technol. 2021;30:e00343. https://doi.org/10.1016/j.susmat.2021.e00343
  53. 53. Serpone N, Emeline AV, Horikoshi S, Kuznetsov VN, Ryabchuk VK. On the genesis of heterogeneous photocatalysis: a brief historical perspective in the period 1910 to the mid-1980s. Photochem Photobiol Sci. 2012;11(7):1121–50. https://doi.org/10.1039/c2pp25026h
  54. 54. Vyas S. A short review on properties and applications of zinc oxide based thin films and devices: ZnO as a promising material for applications in electronics, optoelectronics, biomedical and sensors. Johnson Matthey Technol Rev. 2020;64(2):202–18. https://doi.org/10.1595/205651320X15694993568524
  55. 55. Hughes AE, Haque N, Northey SA, Giddey S. Platinum group metals: A review of resources, production and usage with a focus on catalysts. Resources. 2021;10(9):93. https://doi.org/10.3390/resources10090093
  56. 56. Rahman M. Magnetic resonance imaging and iron-oxide nanoparticles in the era of personalized medicine. Nanotheranostics. 2023;7(4):424. https://doi.org/10.7150/ntno.86467
  57. 57. Kuscu M, Dinc E, Bilgin BA, Ramezani H, Akan OB. Transmitter and receiver architectures for molecular communications: A survey on physical design with modulation, coding and detection techniques. Proc IEEE. 2019;107(7):1302–41. https://doi.org/10.1109/JPROC.2019.2916081
  58. 58. Heinrich KFJ, Newbury D. Electron probe quantitation. Springer Science & Business Media; 2013. https://doi.org/10.1007/978-1-4757-5581-7
  59. 59. Jang SH, Kawashima S, Yin H. Influence of carbon nanotube clustering on mechanical and electrical properties of cement pastes. Materials. 2016;9(4):220. https://doi.org/10.3390/ma9040220
  60. 60. Zorah M, Mustapa IR, Daud N, Nahida JH, Sudin NAS. Thermomechanical study and thermal behavior of plasticized poly (lactic acid) nanocomposites. Solid State Phenomena. 2021;317:333–40. https://doi.org/10.4028/www.scientific.net/SSP.317.333
  61. 61. Park SH. Personal protective equipment for healthcare workers during the COVID-19 pandemic. Infect Chemother. 2020;52(2):165. https://doi.org/10.3947/ic.2020.52.2.165
  62. 62. Saini V, Sikri K, Batra SD, Kalra P, Gautam K. Development of a highly effective low-cost vaporized hydrogen peroxide-based method for disinfection of personal protective equipment for their selective reuse during pandemics. Gut Pathog. 2020;12:1–11. https://doi.org/10.1186/s13099-020-00322-3
  63. 63. Grant K, Andruchow JE, Conly J, Lee DD, Mazurik L, Atkinson P, et al. Personal protective equipment preservation strategies in the covid-19 era: A narrative review. Infect Prev Pract. 2021;3(3):100146. https://doi.org/10.1016/j.infpip.2021.100146
  64. 64. Zhu X, Li Y, Gu N. Application of artificial intelligence in the exploration and optimization of biomedical nanomaterials. Nano Biomed Eng. 2023;15(3). https://doi.org/10.26599/NBE.2023.9290035
  65. 65. Pagliaro M. Advancing nanochemistry education. Chem–Eur J. 2015;21(34):11931–6. https://doi.org/10.1002/chem.20150103
  66. 66. van Santen RA. Chemical kinetics and catalysis. Springer Science & Business Media; 2013.
  67. 67. Babudurai M. Heavy metal removal in aqueous phase using TiO₂/Iron-oxide nanocomposites. Central Asian J Med Nat Sci. 2021;5(4):533–8.
  68. 68. Zuliani A. Microwave-assisted synthesis of nanocatalysts in batch conditions; 2020. http://hdl.handle.net/10396/19331
  69. 69. Zorah M, Mudhafar M, Naser HA, Mustapa IR. The promises of the potential uses of polymer biomaterials in biomedical applications and their challenges. Int J App Pharm. 2023;15(4):27–36. https://doi.org/10.22159/ijap.2023v15i4.45795
  70. 70. Seyfi J, Jafari SH, Khonakdar HA, Sadeghi GM, Zohuri G, Hejazi I, et al. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles. Appl Surf Sci. 2015;347:224–30. https://doi.org/10.1016/j.apsusc.2015.04.066
  71. 71. Shi S, Si Y, Han Y, Wu T, Iqbal MI, Fei B, et al. Recent progress in protective membranes fabricated via electrospinning: Advanced materials, biomimetic structures and functional applications. Adv Mater. 2022;34(17):2107938. https://doi.org/10.1002/adma.202107938
  72. 72. Mansoori GA. An introduction to nanoscience and nanotechnology. In: Nanoscience and plant–soil systems; 2017. p. 3–20 https://doi.org/10.1007/978-3-319-46835-8_1
  73. 73. Mudhafar M, Zainol I, Alsailawi HA, Zorah M, Karhib MM. Preparation and characterization of FsHA/FsCol beads: Cell attachment and cytotoxicity studies. Heliyon. 2023;9(5). https://doi.org/10.1016/j.heliyon.2023.e18756
  74. 74. Bolanos Ch LC, Alvarez LX. Conductive polymers: Applications in photovoltaic cells and electronic devices. Ciencia y Tecnologia. 2018;34(1):18–38.
  75. 75. Castro E, Garcia AH, Zavala G, Echegoyen L. Fullerenes in biology and medicine. J Mater Chem B. 2017;5(32):6523–35. https://doi.org/10.1039/C7TB01830F
  76. 76. Nurazzi NM, Sabaruddin FA, Harussani MM, Kamarudin SH, Rayung M, Asyraf MRM, et al. Mechanical performance and applications of CNTs reinforced polymer composites-A review. Nanomaterials. 2021;11(9):2186. https://doi.org/10.3390/nano11092186
  77. 77. Karousis N, Tagmatarchis N, Tasis D. Current progress on the chemical modification of carbon nanotubes. Chem Rev. 2010;110(9):5366–97. https://doi.org/10.1021/cr100094z
  78. 78. Foladori G, Invernizzi N. A critical vision of disruptive nanotechnologies. Perspect Glob Dev Technol. 2018;17(5-6):614–31. https://doi.org/10.1163/15691497-12341414
  79. 79. Allan J, Belz S, Hoeveler A, Hugas M, Okuda H, Patri A, et al. Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regul Toxicol Pharmacol. 2021;122:104885. https://doi.org/10.1016/j.yrtph.2021.104885
  80. 80. Zorah M, Mudhafar M, Majhool AA, Abbood SF, Alsailawi HA, Karhib MM, et al. Review of the green composite: Importance of biopolymers, uses and challenges. J Adv Res Fluid Mech Therm Sci. 2023;111(1):194–216. https://doi.org/10.37934/arfmts.111.1.194216
  81. 81. Ortega-Nieto C, Losada-Garcia N, Prodan D, Furtos G, Palomo JM. Recent advances on the design and applications of antimicrobial nanomaterials. Nanomaterials. 2023;13(17):2406. https://doi.org/10.3390/nano13172406
  82. 82. Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, et al. A comprehensive review of nanoparticles: From classification to application and toxicity. Molecules. 2024;29(15):3482. https://doi.org/10.3390/molecules29153482
  83. 83. Ahmed SF, Kumar PS, Ahmed B, Mehnaz T, Shafiullah GM, Nguyen VN, et al. Carbon-based nanomaterials: Characteristics, dimensions, advances and challenges in enhancing photocatalytic hydrogen production. Int J Hydrogen Energy. 2024;52:424–42. https://doi.org/10.1016/j.ijhydene.2023.03.185
  84. 84. Feliczak-Guzik A. Nanomaterials as photocatalysts synthesis and their potential applications. Materials. 2022;16(1):193. https://doi.org/10.3390/ma16010193
  85. 85. Omran TZ, Jasmi FS, Obaid KM, Ghareeb AK, Alsailawi HA, Mudhafar M. The interleukin gene landscape: Understanding its influence on inflammatory mechanisms in apical periodontitis. Mol Biol Rep. 2025;52(1):365. https://doi.org/10.1007/s11033-025-10477-4
  86. 86. Thwala LN, Ndlovu SC, Mpofu KT, Lugongolo MY, Mthunzi-Kufa P. Nanotechnology-based diagnostics for diseases prevalent in developing countries: Current advances in point-of-care tests. Nanomaterials. 2023;13(7):1247. https://doi.org/10.3390/nano13071247
  87. 87. Obeed HH, Ridha NJ, Alosfur F, Tahir KJ, Madlol R, Hussein BM, editors. Comprehensive study on the effect of laser on human blood: Proceedings of the AIP Conference; 2022 Jan 11. Melville (NY): AIP Publishing; 2022. https://doi.org/10.1063/5.0067072
  88. 88. Sharma A, Jangra N, Dheer D, Jha SK, Gupta G, Puri V, et al. Understanding the journey of biopolymeric nanoformulations for oral drug delivery: Conventional to advanced treatment approaches. Eur Polym J. 2024;218:113338. https://doi.org/10.1016/j.eurpolymj.2024.113338
  89. 89. Preethi M, Adhav S, Kursunge H, Borse V. Introduction to nanoparticles as a potential carrier for brain targeting. In: Application of nanocarriers in brain delivery of therapeutics. Springer; 2024. p. 43–68 https://doi.org/10.1007/978-981-97-2859-6
  90. 90. Alshammari BH, Lashin MMA, Mahmood MA, Al-Mubaddel FS, Ilyas N, Rahman N, et al. Organic and inorganic nanomaterials: fabrication, properties and applications. RSC Adv. 2023;13(20):13735–85. https://doi.org/10.1039/d3ra01421e
  91. 91. Verma ML, Dhanya BS, Rani V, Thakur M, Jeslin J, Kushwaha R. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. Int J Biol Macromol. 2020;154:390–412. https://doi.org/10.1016/j.ijbiomac.2020.03.106
  92. 92. Khan S, Hossain MK. Classification and properties of nanoparticles. In: Nanoparticle-based polymer composites. Elsevier; 2022. p. 15–54 https://doi.org/10.1016/C2020-0-01662-2
  93. 93. Sajid M, Płotka-Wasylka J. Nanoparticles: Synthesis, characteristics and applications in analytical and other sciences. Microchem J. 2020;154:104623. https://doi.org/10.1016/j.microc.2020.104623
  94. 94. Kharissova OV, Kharisov BI, Oliva González CM, Méndez YP, López I. Greener synthesis of chemical compounds and materials. R Soc Open Sci. 2019;6(11):191378. https://doi.org/10.1098/rsos.191378
  95. 95. Kim D, Shin K, Kwon SG, Hyeon T. Synthesis and biomedical applications of multifunctional nanoparticles. Adv Mater. 2018;30(49):1802309. https://doi.org/10.1002/adma.201802309
  96. 96. Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng DL, et al. Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev. 2015;44(21):7540–90. https://doi.org/10.1039/C5CS00343A
  97. 97. Senchukova M. A brief review about the role of nanomaterials, mineral-organic nanoparticles and extra-bone calcification in promoting carcinogenesis and tumor progression. Biomedicines. 2019;7(3):65. https://doi.org/10.3390/biomedicines7030065
  98. 98. Zhang Y, Bai Y, Jia J, Gao N, Li Y, Zhang R, et al. Perturbation of physiological systems by nanoparticles. Chem Soc Rev. 2014;43(10):3762–809. https://doi.org/10.1039/c3cs60338e
  99. 99. Yu Z, Gao L, Chen K, Zhang W, Zhang Q, Li Q, et al. Nanoparticles: A new approach to upgrade cancer diagnosis and treatment. Nanoscale Res Lett. 2021;16(1):88. https://doi.org/10.1186/s11671-021-03489-z
  100. 100. Rahmani S, Maroufkhani M, Mohammadzadeh-Komuleh S, Khoubi-Arani Z. Polymer nanocomposites for biomedical applications. In: Fundamentals of bionanomaterials. Elsevier; 2022. p. 175–215 https://doi.org/10.1016/B978-0-12-822131-1.00014-2
  101. 101. Tekade RK, Maheshwari R, Soni N, Tekade M, Chougule MB. Nanotechnology for the development of nanomedicine. In: Mishra V, Kesharwani P, Amin MC, Iyer AK, editors. Nanotechnology-based approaches for targeting and delivery of drugs and genes. Cambridge (MA): Elsevier; 2017. p. 3–61 https://doi.org/10.1016/B978-0-12-804826-5.00001-9
  102. 102. Domingues C, Lian X, Zhang Y, Smith J, Kumar R, Li H, et al. Where is nano today and where is it headed? A review of nanomedicine and the dilemma of nanotoxicology. ACS Nano. 2022;16(7):9994–10041. https://doi.org/10.1021/acsnano.2c02965
  103. 103. Sinha A, Simnani FZ, Singh D, Nandi A, Choudhury A, Patel P, et al. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Mater Today Bio. 2022;17:100463. https://doi.org/10.1016/j.mtbio.2022.100463
  104. 104. Ambekar RS, Kandasubramanian B. Advancements in nanofibers for wound dressing: A review. Eur Polym J. 2019;117:304–36. https://doi.org/10.1016/j.eurpolymj.2019.04.060
  105. 105. Parham S, Zargar A, Bakhsheshi-Rad HR, Kharaziha M, Ismail AF, Sharif S, et al. Antimicrobial synthetic and natural polymeric nanofibers as wound dressing: A review. Adv Eng Mater. 2022;24(6):2101460. https://doi.org/10.1002/adem.202101460
  106. 106. Bhardwaj AK, Kant A, Rehalia A, Singh V, Sharma R. A review on nanomaterials for drug delivery systems and application of carbon-based nanomaterials. ES Mater Manuf. 2023;21(2):824. https://doi.org/10.30919/esmm5f824
  107. 107. Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, et al. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environ Res. 2022;204:111967. https://doi.org/10.1016/j.envres.2021.111967
  108. 108. Hezam MJ, Abbood MA, Shakir M, Mahmood AA, Mudhafar M, Alsailawi HA, et al. Optimal design and sizing of energy storage solution-based hybrid energy system considering economic and technical objective functions: A case study. J Energy Storage. 2025;30:125:117041. https://doi.org/10.1016/j.est.2025.117041
  109. 109. Gorgieva S, Zemljić LF, Strnad S, Kokol V. Textile-based biomaterials for surgical applications. In: Fundamental biomaterials: polymers. Amsterdam: Elsevier; 2018. p. 179–215 https://doi.org/10.1016/B978-0-08-102755-7.00010-6
  110. 110. M Matteucci F, Giannantonio R, Calabi F, Agostiano A, Gigli G, Rossi M. Deployment and exploitation of nanotechnology, nanomaterials and nanomedicine. In: AIP Conference Proceedings; 2018; Kuala Lumpur, Malaysia. Melville: AIP Publishing; 2018. https://doi.org/10.1063/1.5080893
  111. 111. Beg S, Rahman M, Barkat MA, Ahmad FJ. Nanomedicine for the treatment of disease: from concept to application. CRC Press; 2019. p. 6 https://doi.org/10.1201/9780429425714
  112. 112. Jamali MC, Mohamed AA, Jamal A, Kamal MA, Al Abdulmonem W, Saeed BA, et al. Biological mechanisms and therapeutic prospects of interleukin-33 in pathogenesis and treatment of allergic disease. J Inflamm. 2025;22(1):1–4. https://doi.org/10.1186/s12950-025-00438-w
  113. 113. Khan SH. Green nanotechnology for the environment and sustainable development. In: Green materials for wastewater treatment. 2020. p. 13–46 https://doi.org/10.1016/B978-0-12-820199-3.00002-2
  114. 114. Jain KK. Nanomolecular diagnostics. In: The handbook of nanomedicine. 3rd ed. Cham: Springer; 2017. p. 133–200 https://doi.org/10.1007/978-3-319-45108-1_7
  115. 115. Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. Nano Converg. 2021;8(1):34. https://doi.org/10.1186/s12951-021-00873-z
  116. 116. Zonouri SA, Ali Alsailawi H, Mudhafar M. A high-sensitivity Wilkinson power divider sensor for detecting dielectric properties in edible oils. Sensing Imaging. 2025;26(1):1–34. https://doi.org/10.1007/s11220-025-00567-9
  117. 117. Adwani G, Bharti S, Kumar A. Engineered nanoparticles in non-invasive insulin delivery for precision therapeutics of diabetes. Int J Biol Macromol. 2024;233:133437. https://doi.org/10.1016/j.ijbiomac.2024.01.001
  118. 118. Bhutta ZA, Kanwal A, Ali M, Kulyar MF-E-A, Yao W, Shoaib M, et al. Emerging nanotechnology role in the development of innovative solutions against COVID-19 pandemic. Nanotechnology. 2021;32(48):482001. https://doi.org/10.1016/j.nano.2021.482001
  119. 119. Zhang H, Tang J, Cao H, Wang C, Shen C, Liu J. Review of the applications of micro/nanorobots in biomedicine. ACS Appl Nano Mater. 2024;7(15):17151–92 https://doi.org/10.1021/acsanm.4b01961
  120. 120. Farooq MU, Lawrie CH, Deng NN. Engineering nanoparticles for cancer immunotherapy: current achievements, key considerations and future perspectives. Chem Eng J. 2024:150356. https://doi.org/10.1016/j.cej.2024.150356
  121. 121. Mandpe P, Prabhakar B, Gupta H, Shende P. Glucose oxidase-based biosensor for glucose detection from biological fluids. Sensor Rev. 2020;40(4):497–511. https://doi.org/10.1108/SR-09-2019-0224
  122. 122. Yang J, Yang J, Gong X, Zheng Y, Yi S, Cheng Y, et al. Recent progress in microneedles-mediated diagnosis, therapy and theranostic systems. Adv Healthc Mater. 2022;11(10):2102547. https://doi.org/10.1002/adhm.202102547
  123. 123. Tawiah B, Ofori EA, George SC. Nanotechnology in societal development. In: Nanotechnology in societal development. Springer; 2024.p. 1–64 https://doi.org/10.1007/978-3-030-34610-4_1
  124. 124. Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm Sin B. 2023;13(11):4391–416. https://doi.org/10.1016/j.apsb.2023.06.004
  125. 125. Desai N, Katare P, Makwana V, Salave S, Vora LK, Giri J. Tumor-derived systems as novel biomedical tools-turning the enemy into an ally. Biomater Res. 2023;27(1):113. https://doi.org/10.1186/s43274-023-00039-6
  126. 126. Burke MT. Nanotechnology: the business. CRC Press; 2018. https://doi.org/10.1201/9781315219394
  127. 127. Tibbals HF. Medical nanotechnology and nanomedicine. CRC Press; 2017. https://doi.org/10.1201/b10151
  128. 128. Cellina M, Rossi F, Bianchi L, Verdi A, Russo P, Conti G, et al. Digital twins: the new frontier for personalized medicine? Appl Sci. 2023;13(13):7940. https://doi.org/10.3390/app13137940
  129. 129. Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent advancements in nanobiosensors: current trends, challenges, applications and future scope. Biosensors (Basel). 2022;12(10):892. https://doi.org/10.3390/bios12100892
  130. 130. Xu H, Gao M, Tang X, Zhang W, Luo D, Chen M. Micro/nano technology for next-generation diagnostics. Small Methods. 2020;4(4):1900506. https://doi.org/10.1002/smtd.201900506
  131. 131. Escobar M, Ghareeb M, Mudhafar M, Hezam MJ, Ghazaly NM, Zaki SH, et al. Enhancing quantum capacitance in BNyne/Graphene heterostructures through transition-metal dopants for high-performance supercapacitors. J Organomet Chem. 2024;1022:123404. https://doi.org/10.1016/j.jorganchem.2024.123404
  132. 132. Welch EC, Powell JM, Clevinger TB, Fairman AE, Shukla A. Advances in biosensors and diagnostic technologies using nanostructures and nanomaterials. Adv Funct Mater. 2021;31(44):2104126. https://doi.org/10.1002/adfm.202104126
  133. 133. Pirzada M, Altintas Z. Nanomaterials for healthcare biosensing applications. Sensors. 2019;19(23):5311. https://doi.org/10.3390/s19235311
  134. 134. Abd Elkodous M, El-Sayyad GS, Abdelrahman IY, El-Bastawisy HS, Mohamed AE, Mosallam FM, et al. Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf B Biointerfaces. 2019;180:411–28. https://doi.org/10.1016/j.colsurfb.2019.05.008
  135. 135. Moura RP, Martins C, Pinto S, Sousa F, Sarmento B. Blood-brain barrier receptors and transporters: an insight on their function and how to exploit them through nanotechnology. Expert Opin Drug Deliv. 2019;16(3):271–85. https://doi.org/10.1080/17425247.2019.1587204
  136. 136. Martinelli C, Pucci C, Battaglini M, Marino A, Ciofani G. Antioxidants and nanotechnology: promises and limits of potentially disruptive approaches in the treatment of central nervous system diseases. Adv Healthc Mater. 2020;9(3):1901589. https://doi.org/10.1002/adhm.201901589
  137. 137. McLoughlin CD, Nevins S, Stein JB, Khakbiz M, Lee K. Overcoming the blood-brain barrier: multifunctional nanomaterial-based strategies for targeted drug delivery in neurological disorders. Small Sci. 2024;4(12):2400232. https://doi.org/10.1002/smsc.202400232

Downloads

Download data is not yet available.