Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 4 (2025)

Indigenous medicinal flora of Northeast Indian Himalayan range as promising remedies for emerging and re-emerging diseases

DOI
https://doi.org/10.14719/pst.9008
Submitted
21 April 2025
Published
24-10-2025 — Updated on 05-11-2025
Versions

Abstract

To meet the needs for health and wellness, people have long turned to home cures, traditional healers and traditional medical knowledge. Several modern pharmaceutical products such as Aspirin, Artemisinin are derived from natural sources and traditional wisdom. The scientists behind these drugs clearly depended on traditional knowledge to make their remarkable discoveries. The Northeast states of India comprising of eight states distinguish themselves for their rich biodiversity, diverse culture and ethnic groups and their diverse medicinal flora constitutes the most distinctive feature. The traditional wisdom and practices of these tribes have helped identify therapeutic plants that are now used or studied in present-day medical treatments. Despite facing challenges in documenting and preserving this folk wisdom, exploration through survey and scientific studies of these valuable resources can enhance research, conserve rare species and even promote entrepreneurship among local youths. These indigenous plants could be more than just traditional remedies. They could assist in the development of novel medications to combat emerging and re-emerging diseases such as COVID-19, HIV, cancer, dengue, yellow fever and others. This paper presents a comprehensive examination regarding the uses and potential of numerous indigenous medicinal plants utilized in the Northeast regions, which have been historically used to address a range of ailments. Further investigations into these plants may pave the way for breakthrough research.  

References

  1. 1. Jain C, Khatana S, Vijayvergia R. Bioactivity of secondary metabolites of various plants: a review. Int J Pharm Sci Res. 2019;10(2):494-504.
  2. 2. Sharma A, Patel SK, Singh GS. Traditional knowledge of medicinal plants among three tribal communities of Vindhyan highlands, India: an approach for their conservation and sustainability. Environ Sustain. 2021;4:749-83. https://doi.org/10.1007/s42398-021-00196-4
  3. 3. World Health Organization. General guidelines for methodologies on research and evaluation of traditional medicine. Geneva; 2001.
  4. 4. Balkrishna A, Sharma N, Srivastava D, Kukreti A, Srivastava S, Arya V. Exploring the safety, efficacy and bioactivity of herbal medicines: bridging traditional wisdom and modern science in healthcare. Future Integr Med. 2024;3(1):35-49. https://doi.org/10.14218/FIM.2023.00086
  5. 5. Chaachouay N, Zidane L. Plant-derived natural products: a source for drug discovery and development. Drugs Drug Candidates. 2024;3(1):184-207. https://doi.org/10.3390/ddc3010011
  6. 6. Sahoo CR, Mandhata CP, Dubey D, Paidesetty SK, Rakholiya K, Padhy RN. Qualitative and quantitative phytochemical analysis of a selected medicinal plant. In: Herbal formulations, phytochemistry and pharmacognosy. Elsevier; 2024. p. 423-32 https://doi.org/10.1016/B978-0-443-15383-9.00016-0
  7. 7. Boukhatem MN, Setzer WN. Aromatic herbs, medicinal plant-derived essential oils and phytochemical extracts as potential therapies for coronaviruses: future perspectives. Plants. 2020;9(6):800. https://doi.org/10.3390/plants9060800
  8. 8. Gogoi D. Making of India's North-east: geopolitics of borderland and transnational interactions. New Delhi: Routledge India; 2019 https://doi.org/10.4324/9780429340352
  9. 9. Das M, Albert V, Das S, Dolma GK, Majumdar T, Baurah PJ, et al. An integrated FoodNet in North East India: fostering one health approach to fortify public health. BMC Public Health. 2024;24:451. https://doi.org/10.1186/s12889-024-18007-w
  10. 10. Chakraborty R, De B, Devanna N, Sen S. North-East India an ethnic storehouse of unexplored medicinal plants. J Nat Prod Plant Resour. 2012;2(1):143-52.
  11. 11. De LC, Singh DR. Natural resources in North East region of India. Int J Agric Sci Res. 2017;7(5):51-66. https://doi.org/10.24247/ijasroct20178
  12. 12. Sachan D, Kumar P. Shifting climate and the associated impacts on regional biodiversity: a present and future outlook from the Indian subcontinent. Environ Res Lett. 2024;19(8):084033.https://doi.org/10.1088/1748-9326/ad5f45
  13. 13. Kathe W. Revision of the guidelines on the conservation of medicinal plants by WHO, IUCN, WWF and TRAFFIC. In: Medicinal and aromatic plants. Dordrecht: Springer; 2006. p. 109-20 https://doi.org/10.1007/1-4020-5449-1_8
  14. 14. Wanzala W, Minyoso SI. Ethnomedicines in the 21st century: challenges and opportunities in the contemporary world. J Med Herbs Ethnomed. 2024;10:12-36. https://doi.org/10.25081/jmhe.2024.v10.8832
  15. 15. Jain SK, Kumar V, Saharia M. Analysis of rainfall and temperature trends in North-east India. Int J Climatol. 2013;33(4):968-78. https://doi.org/10.1002/joc.3483
  16. 16. Mao AA, Hynniewta TM, Sanjappa M. Plant wealth of North-east India with reference to ethnobotany. Indian J Tradit Knowl. 2009;8(1):96-103.
  17. 17. Chatterjee S, Saikia A, Dutta P, Ghosh D, Worah S. Review of biodiversity in North-east India. New Delhi: WWF-India; 2006. p. 1-71
  18. 18. Tripathi RS, Roy A, Kushwaha D, Lalnunmawia F, Lalnundanga LH, Lalnunzira C, et al. Perspectives of forest biodiversity conservation in North-east India. J Biodivers Bioprospect Dev. 2016;3(2):1-9.
  19. 19. India. Forest Survey of India. India state forest report. New Delhi: Govt of India; 2009.
  20. 20. Dutta M, Dutta PK. Community-based conservation in Eastern Himalayan biodiversity hotspot: a case study. Indian J Tradit Knowl. 2023;22(1):220-9. https://doi.org/10.56042/ijtk.v22i1.33482
  21. 21. Dkhar M, Tiwari BK. Traditional ecological knowledge of tribal communities of North East India. Biodiversitas J Biol Divers. 2020;21(7). https://doi.org/10.13057/biodiv/d210743
  22. 22. Milburn MP. Indigenous nutrition: using traditional food knowledge to solve contemporary health problems. Am Indian Q. 2004;:411-34. https://doi.org/10.1353/aiq.2004.0104
  23. 23. Dutta BK, Dutta PK. Potential of ethnobotanical studies in North East India: an overview. Indian J Tradit Knowl. 2005;4(1):7-14.
  24. 24. Gaur R. A brief history: traditional Chinese medicinal system. Pharmacol Res Mod Chin Med. 2024;10:100387. https://doi.org/10.1016/j.prmcm.2024.100387
  25. 25. Kapoor LD. Ayurvedic medicine of India. J Herbs Spices Med Plants. 1993;1(4):37-219. https://doi.org/10.1300/J044v01n04_07
  26. 26. Brusotti G, Cesari I, Dentamaro A, Caccialanza G, Massolini G. Isolation and characterization of bioactive compounds from plant resources: the role of analysis in the ethnopharmacological approach. J Pharm Biomed Anal. 2014;87:218-28. https://doi.org/10.1016/j.jpba.2013.03.007
  27. 27. Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect. 2001;109 Suppl 1:69-75. https://doi.org/10.1289/ehp.01109s169
  28. 28. Tynsong H, Tiwari BK, Lynser MB. Medicinal plants of Meghalaya, India. Medplant Netw News. 2006;6(2):7-10.
  29. 29. Rao RR. Ethnobotany of Meghalaya: medicinal plants used by Khasi and Garo tribes. Econ Bot. 1981;35(1):4-9. https://doi.org/10.1007/BF02859208
  30. 30. Laloo D, Hemalatha S. Ethnomedicinal plants used for diarrhea by tribals of Meghalaya, North-east India. Pharmacogn Rev. 2011;5(10):147. https://doi.org/10.4103/0973-7847.91108
  31. 31. Mawthoh AB, Seram D, Singh KA, Watt HJ. Applications of prickly ash (Zanthoxylum spp.): potential in traditional science, modern science and agriculture. J Food Chem Nanotechnol. 2023;9:S117-31. https://doi.org/10.17756/jfcn.2023-s1-016
  32. 32. Devi TI, Devi KU, Singh EJ. Wild medicinal plants in the hill of Manipur, India: a traditional therapeutic potential. Int J Sci Res Publ. 2015;5(6):1-9.
  33. 33. Deb L, Laishram S, Khumukcham N, Ningthoukhongjam D, Nameirakpam SS, Dey A, et al. Past, present and perspectives of Manipur traditional medicine: a major health care system available for rural population in the North-East India. J Ethnopharmacol. 2015;169:387-400. https://doi.org/10.1016/j.jep.2014.12.074
  34. 34. Panmei R, Gajurel PR, Singh B. Ethnobotany of medicinal plants used by the Zeliangrong ethnic group of Manipur, North-east India. J Ethnopharmacol. 2019;235:164-82. https://doi.org/10.1016/j.jep.2019.02.009
  35. 35. Sharma HK, Chhangte L, Dolui AK. Traditional medicinal plants in Mizoram, India. Fitoterapia. 2001;72(2):146-61. https://doi.org/10.1016/S0367-326X(00)00278-1
  36. 36. Shankar R, Rawat MS, Majumdar R, Baruah D, Bharali BK. Medicinal plants used in traditional medicine in Mizoram. World J Sci Technol. 2012;2(12):42-5. https://doi.org/10.5296/jbls.v4i2.3489
  37. 37. Laldingliani TBC, Thangjam NM, Zomuanawma R, Bawitlung L, Pal A, Kumar A. Ethnomedicinal study of medicinal plants used by Mizo tribes in Champhai district of Mizoram, India. J Ethnobiol Ethnomed. 2022;18(1):1-29. https://doi.org/10.1186/s13002-022-00520-0
  38. 38. Khongsai M, Saikia SP, Kayang H. Ethnomedicinal plants used by different tribes of Arunachal Pradesh. Indian J Tradit Knowl. 2011;10(3):541-6.
  39. 39. Tangjang S, Namsa ND, Aran C, Litin A. An ethnobotanical survey of medicinal plants in the Eastern Himalayan zone of Arunachal Pradesh, India. J Ethnopharmacol. 2011;134(1):18-25.https://doi.org/10.1016/j.jep.2010.11.053
  40. 40. Perme N, Choudhury SN, Choudhury R, Natung T, De B. Medicinal plants in traditional use at Arunachal Pradesh, India. Int J Phytopharm. 2015;5(5):86-98.
  41. 41. Shil S, Choudhury MD, Das S. Indigenous knowledge of medicinal plants used by the Reang tribe of Tripura state of India. J Ethnopharmacol. 2014;152(1):135-41. https://doi.org/10.1016/j.jep.2013.12.037
  42. 42. Debbarma M, Pala NA, Kumar M, Bussmann RW. Traditional knowledge of medicinal plants in tribes of Tripura in North-east, India. Afr J Tradit Complement Altern Med. 2017;14(4):156-68. https://doi.org/10.21010/ajtcam.v14i4.19
  43. 43. Jamir TT, Sharma HK, Dolui AK. Folklore medicinal plants of Nagaland, India. Fitoterapia. 1999;70(4):395-401. https://doi.org/10.1016/S0367-326X(99)00063-5
  44. 44. Rao RR, Jamir NS. Ethnobotanical studies in Nagaland. I. medicinal plants. Econ Bot. 1982;36(2):176-81. https://doi.org/10.1007/BF02858714
  45. 45. Saikia AP, Ryakala VK, Sharma P, Goswami P, Bora U. Ethnobotany of medicinal plants used by Assamese people for various skin ailments and cosmetics. J Ethnopharmacol. 2006;106(2):149-57. https://doi.org/10.1016/j.jep.2005.11.033
  46. 46. Das AK, Dutta BK, Sharma GD. Medicinal plants used by different tribes of Cachar district, Assam. Indian J Tradit Knowl. 2008;7(3):446-54.
  47. 47. Maity D, Pradhan N, Chauhan AS. Folk uses of some medicinal plants from North Sikkim. Indian J Tradit Knowl. 2004;3(1):66-71.
  48. 48. Nepal A, Jana S, Bhutia S. Review on medicinal plants of Sikkim Himalayan region with emphasis on anticancer study. J Appl Pharm Sci. 2024;14(2):13-26. https://doi.org/10.7324/JAPS.2024.162372
  49. 49. Singh HB, Prasad P, Rai LK. Folk medicinal plants in the Sikkim Himalayas of India. Asian Folkl Stud. 2002:295-310. https://doi.org/10.2307/1178975
  50. 50. Wang WH, Thitithanyanont A, Urbina AN, Wang SF. Emerging and re-emerging diseases. Pathogens. 2021;10(7):827. https://doi.org/10.3390/pathogens10070827
  51. 51. World Health Organization. The true death toll of COVID-19: estimating global excess mortality. Geneva; 2021
  52. 52. National Cancer Institute. Cancer statistics. Bethesda (MD); 2024.
  53. 53. World Health Organization. HIV data and statistics. Geneva; 2024.
  54. 54. Malabadi RB, Kolkar P, Chalannavar K. Human monkeypox detected first time in India: role of traditional herbal treatment. Int J Sci Res Rev. 2022;4(12):3686-91.
  55. 55. Balwan WK, Balwan WK, Saba N. Review based study of monkeypox disease: a public health emergency of international concern. Saudi J Med Pharm Sci. 2024;10(9):670-6. https://doi.org/10.36348/sjmps.2024.v10i09.005
  56. 56. Garcia AI, Mondragón-T P, Huerta-S A, Villanueva-F F. Advancements in monkeypox vaccines development: a critical review of emerging technologies. Front Immunol. 2024;15:1456060. https://doi.org/10.3389/fimmu.2024.1456060
  57. 57. Rizvi SA, Einstein GP, Tulp OL, Sainvil F, Branly R. Introduction to traditional medicine and their role in prevention and treatment of emerging and re-emerging diseases. Biomolecules. 2022;12(10):1442. https://doi.org/10.3390/biom12101442
  58. 58. Abubakar IB, Kankara SS, Malami I, Danjuma JB, Muhammad YZ, Yahaya H, et al. Traditional medicinal plants used for treating emerging and re-emerging viral diseases in northern Nigeria. Eur J Integr Med. 2022;49:102094. https://doi.org/10.1016/j.eujim.2021.102094
  59. 59. Paul V, Varshney A, Nandru R, Kushwaha S, Prasad V, Dasgupta S. Essential oils and extracts of commonly used medicinal plants to fight against emerging and re-emerging infectious diseases including COVID-19. J Med Plants. 2023;11:11-24. https://doi.org/10.22271/plants.2023.v11.i1a.1506
  60. 60. Chang KW, Lin TY, Fu SL, Ping YH, Chen FP, Kung YY. A Houttuynia cordata-based Chinese herbal formula improved symptoms of allergic rhinitis during the COVID-19 pandemic. J Chin Med Assoc. 2022;85(6):717-22. https://doi.org/10.1097/JCMA.0000000000000732
  61. 61. Chiang LC, Chang JS, Chen CC, Ng LT, Lin CC. Anti-herpes simplex virus activity of Bidens pilosa and Houttuynia cordata. Am J Chin Med. 2003;31(3):355-62. https://doi.org/10.1142/S0192415X03001090
  62. 62. Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM, Al-Hemaid F. Identification of SARS-CoV-2 inhibitors from extracts of Houttuynia cordata Thunb. Saudi J Biol Sci. 2021;28(12):7517-27. https://doi.org/10.1016/j.sjbs.2021.08.100
  63. 63. Inthi P, Pandith H, Kongtawelert P, Banjerdpongchai R. Anti-cancer effect and active phytochemicals of Houttuynia cordata Thunb. against human breast cancer cells. Asian Pac J Cancer Prev. 2023;24(4):1265. https://doi.org/10.31557/APJCP.2023.24.4.1265
  64. 64. Lin ES, Huang CY. Cytotoxic activities and the allantoinase inhibitory effect of the leaf extract of the carnivorous pitcher plant, Nepenthes miranda. Plants. 2022;11(17):2265. https://doi.org/10.3390/plants11172265
  65. 65. Sarkar S, Kar A, Shaw P, DasGupta B, Keithellakpam OS, Mukherjee PK, et al. Hydroalcoholic root extracts of Houttuynia cordata (Thunb.) standardized by UPLC-Q-TOF-MS/MS promotes apoptosis in human hepatocarcinoma cell HepG2 via GSK-3β/β-catenin/PDL-1 axis. Fitoterapia. 2023;171:105684. https://doi.org/10.1016/j.fitote.2023.105684
  66. 66. Sangeet S, Khan A. An in-silico approach to identify bioactive phytochemicals from Houttuynia cordata Thunb. as potential inhibitors of human glutathione reductase. J Biomol Struct Dyn. 2023;:1-20. https://doi.org/10.1101/2023.08.15.553374
  67. 67. Leardkamolkarn V, Sirigulpanit W, Phurimsak C, Kumkate S, Himakoun L, Sripanidkulchai B. The inhibitory actions of Houttuynia cordata aqueous extract on dengue virus and dengue-infected cells. J Food Biochem. 2012;36(1):86-92. https://doi.org/10.1111/j.1745-4514.2010.00514.x
  68. 68. Chelleng N, Puzari M, Chetia P, Tamuly C. Phenolic compounds of Zanthoxylum armatum DC as potential inhibitors of urease and SARS-CoV2 using molecular docking approach and with simulation study. Nat Prod Res. 2023;37(12):1993-7. https://doi.org/10.1080/14786419.2022.2110096
  69. 69. Afzal M, Qais FA, Abduh NA, Christy M, Ayub R, Alarifi A. Identification of bioactive compounds of Zanthoxylum armatum as potential inhibitor of pyruvate kinase M2 (PKM2): computational and virtual screening approaches. Heliyon. 2024;10(5):e27361. https://doi.org/10.1016/j.heliyon.2024.e27361
  70. 70. Oh K, Adnan M, Cho D. Uncovering mechanisms of Zanthoxylum piperitum fruits for the alleviation of rheumatoid arthritis based on network pharmacology. Biology. 2021;10(8):703. https://doi.org/10.3390/biology10080703
  71. 71. Consul C, Beg MA, Thakur SC. Terpenoids from Centella asiatica, a novel inhibitor against RNA-dependent-RNA polymerase activity of NSP12 of the SARS CoV-2 (Covid-19). Indian J Nat Prod Resour. 2022;12(4):527-37.
  72. 72. Mudaliana S. Antimicrobial activity of Centella asiatica and Gigantochloa apus. J Basic Clin Physiol Pharmacol. 2021;32(4):755-9. https://doi.org/10.1515/jbcpp-2020-0396
  73. 73. Maduray K, Moodley R, Ramdhani S, Parboosing R. The anti-HIV activity of biogenic silver nanoparticles synthesized from Centella asiatica extracts. J Herb Med. 2022;35:100592. https://doi.org/10.1016/j.hermed.2022.100592
  74. 74. Zhang Y, Yang Z, Cock IE. Centella asiatica (L.) urban leaf extracts inhibit the growth of bacterial triggers of selected autoimmune inflammatory diseases and potentiate the activity of conventional antibiotics. Pharmacogn Commun. 2020;10(3). https://doi.org/10.5530/pc.2020.3.24
  75. 75. Rajagopal K, Byran G, Jupudi S, Vadivelan R. Activity of phytochemical constituents of black pepper, ginger and garlic against coronavirus (COVID-19): an in silico approach. Int J Health Allied Sci. 2020;9(5):43-50. https://doi.org/10.4103/ijhas.IJHAS_55_20
  76. 76. Emirik M. Potential therapeutic effect of turmeric contents against SARS-CoV-2 compared with experimental COVID-19 therapies: in silico study. J Biomol Struct Dyn. 2022;40(5):2024-37. https://doi.org/10.1080/07391102.2020.1835719
  77. 77. Almatroodi SA, Syed MA, Rahmani AH. Potential therapeutic targets of curcumin, most abundant active compound of turmeric spice: role in the management of various types of cancer. Recent Pat Anticancer Drug Discov. 2021;16(1):3-29. https://doi.org/10.2174/1574892815999201102214602
  78. 78. Ogidi OI, Tobia PS, Ijere DN, Akpan UM, Omu O, Carbom HE, et al. Investigation of bioactive compounds and antimicrobial sensitivity of pawpaw (Carica papaya) leaf extracts against morbific microorganisms. J Appl Pharm Res. 2022;10(1):21-8. https://doi.org/10.18231/J.JOAPR.2020.21.28
  79. 79. Shafique T, Javed M, Ali M, Iqbal S, Faizan M, Zidan A, et al. In silico analysis of Calotropis procera-derived phytochemicals targeting 3CL protease of SARS-CoV-2. Mol Biotechnol. 2024;:1-14. https://doi.org/10.1007/s12033-024-01253-z
  80. 80. Anil SM, Shalev N, Vinayaka AC, Nadarajan S, Namdar D, Belausov E, et al. Cannabis compounds exhibit anti-inflammatory activity in vitro in COVID-19-related inflammation in lung epithelial cells and pro-inflammatory activity in macrophages. Sci Rep. 2021;11(1):1462. https://doi.org/10.1038/s41598-021-81049-2
  81. 81. Yang Y, Huynh N, Dumesny C, Wang K, He H, Nikfarjam M. Cannabinoids inhibited pancreatic cancer via P-21 activated kinase 1 mediated pathway. Int J Mol Sci. 2020;21(21):8035. https://doi.org/10.3390/ijms21218035
  82. 82. Mobarak H, Meah MS, Sikder N, Tareq M, Azad A, Khatun R, et al. Investigation of preliminary phytochemicals, analgesic, anti-arthritic, thrombolytic and cytotoxic activities of Begonia roxburghii (Miq.) DC. leaves. Med One. 2018;3(1).
  83. 83. Xavier JA, Santos JC, Nova MAV, Gonçalves CM, Borbely KS, Pires KS, et al. Anti-Zika virus effects, placenta protection and chemical composition of Passiflora edulis seeds ethanolic extract. J Braz Chem Soc. 2022;33(7):701-14. https://doi.org/10.21577/0103-5053.20220003
  84. 84. Tiwari BR, Inamdar MN, Orfali R, Alshehri A, Alghamdi A, Almadani ME, et al. Comparative evaluation of the potential anti-spasmodic activity of Piper longum, Piper nigrum, Terminalia bellerica, Terminalia chebul and Zingiber officinale in experimental animals. Saudi Pharm J. 2023;31(9):101705. https://doi.org/10.1016/j.jsps.2023.101705
  85. 85. Kumari A, Prakash V, Gupta D, Kashyap L, Goyal R, Chopra H, et al. Identification and evaluation of antimicrobial and anti-arthritis activities of hydroethanolic extract of Rubus ellipticus leaves. Narra J. 2023;3(3). https://doi.org/10.52225/narra.v3i3.152
  86. 86. Sangma SR, Phukan MM, Chongloi V, Verma DK, Bora P, Kumari S, et al. Phytochemical profiling, antioxidant and antimicrobial investigations on Viburnum simonsii Hook. f. and Thoms, an unexplored ethnomedicinal plant of Meghalaya, India. Future J Pharm Sci. 2023;9(1):114. https://doi.org/10.1186/s43094-023-00567-0
  87. 87. Pandey P, Singhal D, Khan F, Arif M. An in silico screening on Piper nigrum, Syzygium aromaticum and Zingiber officinale Roscoe-derived compounds against SARS-CoV-2: a drug repurposing approach. Biointerface Res Appl Chem. 2021;11. https://doi.org/10.33263/BRIAC114.1112211134
  88. 88. Yousaf MA, Basheera S, Sivanandan S. Inhibition of monkeypox virus DNA polymerase using Moringa oleifera phytochemicals: computational studies of drug-likeness, molecular docking, molecular dynamics simulation and density functional theory. Indian J Microbiol. 2024:1-18. https://doi.org/10.1007/s12088-024-01244-3
  89. 89. Jachak SM, Saklani A. Challenges and opportunities in drug discovery from plants. Curr Sci. 2007;92(9):1251-7.
  90. 90. Bachar SC, Mazumder K, Bachar R, Aktar A, Al Mahtab M. A review of medicinal plants with antiviral activity available in Bangladesh and mechanistic insight into their bioactive metabolites on SARS-CoV-2, HIV and HBV. Front Pharmacol. 2021;12:732891. https://doi.org/10.3389/fphar.2021.732891
  91. 91. Chen SL, Yu H, Luo HM, Wu Q, Li CF, Steinmetz A. Conservation and sustainable use of medicinal plants: problems, progress and prospects. Chin Med. 2016;11:1-10. https://doi.org/10.1186/s13020-016-0108-7
  92. 92. Uprety Y, Asselin H, Dhakal A, Julien N. Traditional use of medicinal plants in the boreal forest of Canada: review and perspectives. J Ethnobiol Ethnomed. 2012;8:1-14. https://doi.org/10.1186/1746-4269-8-7
  93. 93. Coley PD, Heller MV, Aizprua R, Araúz B, Flores N, Correa M, et al. Using ecological criteria to design plant collection strategies for drug discovery. Front Ecol Environ. 2003;1(8):421-8. https://doi.org/10.1890/1540-9295(2003)001[0421:UECTDP]2.0.CO;2
  94. 94. Das M. Five NE states top list in tree cover loss between '01 & '23. Times of India; 2024

Downloads

Download data is not yet available.