Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Cereal allelopathy as a natural herbicide: A review of mechanisms and weed control potential

DOI
https://doi.org/10.14719/pst.9017
Submitted
22 April 2025
Published
10-01-2026

Abstract

Weed infestation remains one of the primary challenges in global crop production, causing substantial yield losses. Conventional reliance on synthetic herbicides raises concerns regarding environmental safety, herbicide resistance and long-term soil health. Therefore, there is an urgent need for sustainable and eco-friendly weed control alternatives. Allelopathy, defined as the biochemical interaction among plants via secondary metabolites, has emerged as a promising natural mechanism for suppressing weed growth. Among various crops, cereals such as rice (Oryza sativa L.), wheat (Triticum aestivum L.), maize (Zea mays L.) and rye (Secale cereale L.) have demonstrated significant allelopathic potential. This review analyses and synthesises recent findings on the allelopathic properties of cereal crops. It evaluates literature describing the types of allelochemicals released by cereals and the plant parts involved, including roots, stems, leaves and decomposing residues. The study also emphasises the mechanisms through which these allelochemicals influence weed suppression and the role of cereal cover crops, root exudates and leaf litter in natural weed control. Evidence shows that cereal crops release a wide range of allelochemicals capable of inhibiting weed seed germination and seedling growth. These compounds are exuded through roots, volatilized from leaves or released during the decomposition of crop residues. The integration of allelopathic cereals into crop rotation and cover cropping systems can reduce weed pressure, minimise chemical herbicide dependency and enhance soil health. Particularly, root exudates and surface residues of rye and wheat have demonstrated consistent weed-suppressive effects. Allelopathy in cereal crops represents a natural and sustainable strategy for weed suppression. By reducing reliance on chemical herbicides, cereal-based allelopathy supports eco-friendly and resilient agricultural systems. To maximise its practical application, further research is required to elucidate allelochemical modes of action, optimise management practices and integrate allelopathy into holistic weed management programs.

References

  1. 1. Khamare Y, Chen J, Marble SC. Allelopathy and its application as a weed management tool: A review. Front Plant Sci. 2022;13:1034613. https://doi.org/10.3389/fpls.2022.1034649
  2. 2. Chauhan BS. Grand challenges in weed management. Front Agron. 2020;1:3. https://doi.org/10.3389/fagro.2019.00003
  3. 3. Scavo A, Restuccia A, Mauromicale G. Allelopathy: General principles and basic aspects for agroecosystem control. In: Gaba S, Smith B, Lichtfouse E, editors. Sustain Agric Rev. Cham: Springer; 2018. p. 47-101 https://doi.org/10.1007/978-3-319-90309-5_2
  4. 4. Ahmed HM. Phytochemical screening, total phenolic content and phytotoxic activity of corn (Zea mays) extracts against some indicator species. Nat Prod Res. 2018;32(6):714-8. https://doi.org/10.1080/14786419.2017.1333992
  5. 5. Anwar S, Naseem S, Karimi S, Asi MR, Akrem A, Ali Z. Bioherbicidal activity and metabolic profiling of potent allelopathic plant fractions against major weeds of wheat-Way forward to lower the risk of synthetic herbicides. Front Plant Sci. 2021;12:632390. https://doi.org/10.3389/fpls.2021.632390
  6. 6. Mushtaq W, Fauconnier ML, de Clerck C. Assessment of induced allelopathy in crop-weed co-culture with rye-pigweed model. Sci Rep. 2024;14:10446. https://doi.org/10.1038/s41598-024-60663-w
  7. 7. Cheng F, Cheng Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci. 2015;6:1020. https://doi.org/10.3389/fpls.2015.01020
  8. 8. Cheng F, Liu Y, Gao Y. Allelopathic effects of cereal crop residues on weed suppression. Plants (Basel). 2022;11:1342.
  9. 9. Wang H, Zhang X, Lin D. Allelopathic action of terpenoids from medicinal plants in weed control. J Environ Manage. 2023;337:117885.
  10. 10. Sahoo S, Seleiman MF, Roy DK, Ranjan S, Sow S, Jat RK, et al. Conservation agriculture and weed management effects on weed community and crop productivity of a rice-maize rotation. Heliyon. 2024;10(10):e31554. https://doi.org/10.1016/j.heliyon.2024.e31554
  11. 11. Rouge A, Adeux G, Busset H, Hugard R, Martin J, Matejicek A, et al. Carry-over effects of cover crops on weeds and crop productivity in no-till systems. Field Crops Res. 2023;295:108899. https://doi.org/10.1016/j.fcr.2023.108899
  12. 12. Macías FA, Galindo JCG, Varela RM. Allelopathic agents from cereals: Structures and activity. Phytochem Rev. 2022;21:325-47.
  13. 13. Biswas PK, Morshed MM, Ullah MJ, Irin IJ. Allelopathic effect of Brassica on weed control and yield of wheat. Bangladesh J Agron. 2014;17(1):73-80. https://doi.org/10.3329/baj.v17i1.23679
  14. 14. H, Kaur R, Batish DR. Allelopathy in weed management: Current trends and future directions. Ecol Indic. 2021;125:107544.
  15. 15. Silva GC, Bagavathiannan M. Mechanisms of weed suppression by cereal rye cover crops: A review. Agron J. 2023;115:1575-81. https://doi.org/10.1002/agj2.21347
  16. 16. Al-Tawaha ARM, Odat N. Use of sorghum and maize allelopathic properties to inhibit germination and growth of wild barley (Hordeum spontaneum). Not Bot Horti Agrobot Cluj Napoca. 2010;38:124-7. https://doi.org/10.15835/nbha3834782
  17. 17. Scavo A, Mauromicale G. Crop allelopathy for sustainable weed management in agroecosystems: Knowing the present with a view to the future. Agronomy. 2021;11(11):2104. https://doi.org/10.3390/agronomy11112104
  18. 18. Oueslati O, Yahyaoui M, Hamdi R, Ben-Hammouda M. Allelopathy and weed control ability of three cover crops residues in conservation agriculture. Bangladesh J Bot. 2023;52(3):845-52. https://doi.org/10.3329/bjb.v52i3.68933
  19. 19. Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun. 2018;9(1):2738. https://doi.org/10.1038/s41467-018-05122-7
  20. 20. Li J, Lin S, Zhang Q, Zhang Q, Hu W, He H. Fine-root traits of allelopathic rice at the seedling stage and their relationship with allelopathic potential. PeerJ. 2019;7:e7006. https://doi.org/10.7717/peerj.7006
  21. 21. Chung IM, Kim JT, Kim SH. Evaluation of allelopathic potential and quantification of momilactone A, B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds. J Agric Food Chem. 2006;54(7):2527-36. https://doi.org/10.1021/jf052796x
  22. 22. Quan NV, Tran HD, Xuan TD, Ahmad A, Dat TD, Khanh TD, et al. Momilactones A and B are alpha-amylase and alpha-glucosidase inhibitors. Molecules. 2019;24(3):482. https://doi.org/10.3390/molecules24030482
  23. 23. Khang DT, Anh LH, Ha PTT, Tuyen PT, Quan NV, Minh LT, et al. Allelopathic activity of dehulled rice and its allelochemicals on weed germination. Int Lett Nat Sci. 2016;58:1-10. https://doi.org/10.56431/p-61d2tq
  24. 24. Amb MK, Ahluwalia AS. Allelopathy: potential role to achieve new milestones in rice cultivation. Rice Sci. 2016;23(4):165-83. https://doi.org/10.1016/j.rsci.2016.06.001
  25. 25. Rahaman F, Shukor Juraimi A, Rafii MY, Uddin K, Hassan L, Chowdhury AK, et al. Allelopathic potential in rice-a biochemical tool for plant defence against weeds. Front Plant Sci. 2022;13:1072723. https://doi.org/10.3389/fpls.2022.1072723
  26. 26. Ho TL, Nguyen TTC, Vu DC, Nguyen NY, Nguyen TTT, Phong TNH, et al. Allelopathic potential of rice and identification of published allelochemicals by cloud-based metabolomics platform. Metabolites. 2020;10(6):244. https://doi.org/10.3390/metabo10060244
  27. 27. Kim KU, Shin DH. Progress and prospect of rice allelopathy research. In: Zeng RS, Mallik AU, Luo SM, editors. Allelopathy in sustainable agriculture and forestry. New York: Springer; 2008. p. 75-94.
  28. 28. Alam MA, Hakim MA, Juraimi AS, Rafii MY, Hasan MM, Aslani F. Potential allelopathic effects of rice plant aqueous extracts on germination and seedling growth of some rice field common weeds. Ital J Agron. 2018;13(2):1066. https://doi.org/10.4081/ija.2018.1066
  29. 29. Pereira V, Castilho PC, Pereira JA. Analysis of the environmental impact of botanical pesticides in soil. Agriculture. 2025;15(10):1053. https://doi.org/10.3390/agriculture15101053
  30. 30. Seal AN, Haig T, Pratley JE. Evaluation of putative allelochemicals in rice root exudates for their role in the suppression of arrowhead root growth. J Chem Ecol. 2004;30(8):1663-78. https://doi.org/10.1023/B:JOEC.0000042075.96379.71
  31. 31. Kato-Noguchi H, Ino T, Sata N, Yamamura S. Isolation and identification of a potent allelopathic substance in rice root exudates. Physiol Plant. 2002;115(3):401-5. https://doi.org/10.1034/j.1399-3054.2002.1150310.x
  32. 32. Khanh TD, Abdelghany EA, Xuan TD. Role of allelochemicals for weed management in rice. Allelopathy J. 2007;19(1):85-96.
  33. 33. Anuar FDK, Ahmad WJW. Allelopathy effect of rice straw on the germination and growth of Echinochloa crus-galli (L.) P. Beauv. AIP Conf Proc. 2015;1678:020012. https://doi.org/10.1063/1.4931199
  34. 34. Kato-Noguchi H, Peters RJ. The role of momilactones in rice allelopathy. J Chem Ecol. 2013;39(2):175-85. https://doi.org/10.1007/s10886-013-0236-9
  35. 35. Tanaka F, Tazawa J, Uchino A. Analysis of volatile substances in flooded soil with rice bran. Annu Meet Jpn Soc Soil Sci Plant Nutr. 2020;85:215.
  36. 36. Schulz M, Serfling A, Koehler H. Benzoxazinoids in wheat and maize: biosynthesis, function and application for weed management. Phytochemistry. 2013;93:12-9.
  37. 37. Khaleel Ibrahim F, Jasim IR, Shihab HF, Salih FKM. Allelopathic activity of Zea mays extracts on some physiological and anatomical features of corn and wheat cultivars. J Appl Nat Sci. 2024;16(3):1282. https://doi.org/10.31018/jans.v16i3.5518
  38. 38. Qi YZ, Zhen WC, Li HY. Allelopathy of decomposed maize straw products on three soil-borne diseases of wheat and the analysis by GC-MS. J Integr Agric. 2015;14(1):88-97. https://doi.org/10.1016/S2095-3119(14)60795-4
  39. 39. Leskovšek R, Eler K, Zamljen SA. Weed suppression and maize yield influenced by cover crop mixture diversity and tillage. Agric Ecosyst Environ. 2025;383:109530. https://doi.org/10.1016/j.agee.2025.109530
  40. 40. Kaiira M, Chemining'wa G, Ayuke F, Baguma Y, Nganga F. Profiles of compounds in root exudates of rice, Cymbopogon, Desmodium, Mucuna and maize. J Agric Sci (Belgrade). 2019;64:399-412. https://doi.org/10.2298/JAS1904399K
  41. 41. Ayeni M, Kayode J. Allelopathic effects of aqueous extracts from residues of Sorghum bicolor stem and maize inflorescence on the germination and growth of Euphorbia heterophylla L. J Plant Stud. 2015;4(2):7-15. https://doi.org/10.5539/jps.v2n2p7
  42. 42. Nikolić N, Loddo D, Masin R. Effect of crop residues on weed emergence. Agronomy. 2021;11(1):163. https://doi.org/10.3390/agronomy11010163
  43. 43. Hussain MI, Araniti F, Schulz M, Baerson S, Vieites-Álvarez Y, Rempelos L, et al. Benzoxazinoids in wheat allelopathy-from discovery to application for sustainable weed management. Environ Exp Bot. 2022;202:104997. https://doi.org/10.1016/j.envexpbot.2022.104997
  44. 44. Niemeyer HM. Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: key defense chemicals of cereals. J Agric Food Chem. 2009;57(5):1677-96. https://doi.org/10.1021/jf8034034
  45. 45. Zhang SZ, Li YH, Kong CH, Xu XH. Interference of allelopathic wheat with different weeds. Pest Manag Sci. 2016;72(1):172-8. https://doi.org/10.1002/ps.3985
  46. 46. Macías FA, Marín D, Oliveros-Bastidas A, Chinchilla D, Simonet AM, Molinillo JM. Isolation and synthesis of allelochemicals from gramineae: benzoxazinones and related compounds. J Agric Food Chem. 2006;54(4):991-1000. https://doi.org/10.1021/jf050896x
  47. 47. Kong CH, Zhang SZ, Li YH, Xia ZC, Yang XF, Meiners SJ, et al. Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nat Commun. 2018;9(1):3867. https://doi.org/10.1038/s41467-018-06429-1
  48. 48. Hussain MI, Vieites-Álvarez Y, Otero P, Prieto MA, Simal-Gandara J, Reigosa MJ, et al. Weed pressure determines the chemical profile of wheat (Triticum aestivum L.) and its allelochemicals potential. Pest Manag Sci. 2022;78(4):1605-19. https://doi.org/10.1002/ps.6779
  49. 49. Aziz MS. Mechanistic insights into the role of allelopathy in suppressing weeds and enhancing crop yields in mixed cropping systems. Life Sci Perspect. 2025;3(1):72-85.
  50. 50. Li Y, Allen VG, Chen J, Wester DB. Allelopathic trade-offs of rye and wheat residues versus 2-benzoxazolinone: impacts on cotton growth. Biology (Basel). 2025;14(10):1321. https://doi.org/10.3390/biology14101321
  51. 51. Nakano H. Identification of L-tryptophan as an allelochemical in wheat bran extract. Allelopathy J. 2007;19(2):461-8.
  52. 52. Nakano H, Morita S, Shinozaki H, Hiradate K. Plant growth inhibitory compounds from aqueous leachate of wheat straw. Plant Growth Regul. 2006;48:215-9.
  53. 53. Li YH, Xia ZC, Kong CH. Allelobiosis in the interference of allelopathic wheat with weeds. Pest Manag Sci. 2016;72(11):2146-53. https://doi.org/10.1002/ps.4246
  54. 54. Bensch T, Schalchli S, Jobet F, Seemann F, Fuentes P. The differential allelopathic potential of Chilean wheat cultivars (Triticum aestivum L.) on different weeds associated with this culture in south Chile. Idesia. 2009;27:77-88. https://doi.org/10.4067/S0718-34292009000300010
  55. 55. Bott C, Dille A, Mohammad A, Simão L, Pradella LO, Lollato RP. Allelopathic potential of winter wheat varieties for weed suppression. Kans Agric Exp Stn Res Rep. 2023;9(4):18. https://doi.org/10.4148/2378-5977.8477
  56. 56. Wu HW, Pratley J, Lemerle D. Autotoxicity of wheat (Triticum aestivum L.) as determined by laboratory bioassays. Plant Soil. 2007;296:85-93. https://doi.org/10.1007/s11104-007-9292-7
  57. 57. Tabaglio V, Marocco A, Schulz M. Allelopathic cover crop of rye for integrated weed control in sustainable agroecosystems. Ital J Agron. 2013;8(1):e5. https://doi.org/10.4081/ija.2013.e5
  58. 58. Rice CP, Otte BA, Kramer M, Schomberg HH, Mirsky SB, Tully KL. Benzoxazinoids in roots and shoots of cereal rye (Secale cereale) and their fates in soil after cover crop termination. Chemoecology. 2022;32(3):117-28. https://doi.org/10.1007/s00049-022-00371-x
  59. 59. Copaja SV, Villarroel E, Bravo HR, Pizarro L, Argandoña VH. Hydroxamic acids in Secale cereale L. and the relationship with their antifeedant and allelopathic properties. Z Naturforsch C J Biosci. 2006;61:670-6. https://doi.org/10.1515/znc-2006-9-1010
  60. 60. Hazrati H, Fomsgaard IS, Ding L, Kudsk P. Mass spectrometry-based metabolomics unravel the transfer of bioactive compounds between rye and neighbouring plants. Plant Cell Environ. 2021;44(12):3722-31. https://doi.org/10.1111/pce.14159
  61. 61. Reberg-Horton SC, Burton SC, Danehower DA, Ma GY, Monks DW, Murphy JP, et al. Changes over time in the allelochemical content of ten cultivars of rye (Secale cereale L.). J Chem Ecol. 2005;31:179-93. https://doi.org/10.1007/s10886-005-0983-3
  62. 62. Hazrati H, Kudsk P, Ding L, Uthe H, Fomsgaard IS. Integrated LC-MS and GC-MS-based metabolomics reveal the effects of plant competition on the rye metabolome. J Agric Food Chem. 2022;70(9):3056-66. https://doi.org/10.1021/acs.jafc.1c06306
  63. 63. Jabran K. Wheat allelopathy for weed control. In: Jabran K, editor. Manipulation of allelopathic crops for weed control. Cham: Springer; 2017. p. 13-20 https://doi.org/10.1007/978-3-319-53186-1_2
  64. 64. Fogliatto S, Patrucco L, De Palo F, Moretti B, Milan M, Vidotto F. Cover crops as green mulching for weed management in rice. Ital J Agron. 2021;16(4):1850. https://doi.org/10.4081/ija.2021.1850
  65. 65. Gitonga D, Li X, Hajihassani A. Effect of termination timing and incorporation of winter cover crop on the suppression of plant-parasitic nematodes and weeds. Crop Prot. 2025;193:107205. https://doi.org/10.1016/j.cropro.2025.107205
  66. 66. Dang Xuan T, Xuan Chien N, Dang Khanh T, Duc Viet T, Ngoc Minh TT. Advancements and challenges in allelopathy: a global perspective on agricultural practices. J Crop Health. 2025;77(5):151. https://doi.org/10.1007/s10343-025-01217-6
  67. 67. Kumari A, Price AJ, Li S, Gamble A, Jacobson A. Effects of cereal rye residue biomass and preemergence herbicide on the emergence of troublesome southeastern weed species. Front Agron. 2025;6:1502864. https://doi.org/10.3389/fagro.2024.1502864
  68. 68. Tabaglio V, Gavazzi C, Schulz M, Marocco A. Alternative weed control using the allelopathic effect of natural benzoxazinoids from rye mulch. Agron Sustain Dev. 2008;28:397-401. https://doi.org/10.1051/agro:2008004
  69. 69. Ercoli L, Masoni A, Pampana S, Arduini I. Allelopathic effects of rye, brown mustard and hairy vetch on redroot pigweed, common lambsquarter and knotweed. Allelopathy J. 2007;19:249-56.
  70. 70. Macías FA, Molinillo JMG, Varela RM, Galindo JCG. Bioactive terpenoids from sunflowers: allelopathic role and potential uses in sustainable agriculture. Phytochem Rev. 2019;18(4):1085-105.
  71. 71. Khanh TD, Xuan TD, Chung IM. Rice allelopathy and the possibility for weed management. Ann Appl Biol. 2007;151(3):325-39. https://doi.org/10.1111/j.1744-7348.2007.00183.x
  72. 72. Jabran K, Farooq M. Implications of narrow plant spacing and allelopathy in crop-weed interactions. Crop Prot. 2013;52:46-52.
  73. 73. Schütz V, Frindte K, Cui J, Zhang P, Hacquard S, Schulze-Lefert P, et al. Differential impact of plant secondary metabolites on the soil microbiota. Front Microbiol. 2021;12:666010.
  74. 74. Batish DR, Singh HP, Kohli RK, Kaur S. Role of allelopathy in weed management. Allelopathy J. 2007;19(1):103-22.
  75. 75. Kostina-Bednarz M, Płonka J, Barchanska H. Allelopathy as a source of bioherbicides: challenges and prospects for sustainable agriculture. Rev Environ Sci Biotechnol. 2023;22:471-504. https://doi.org/10.1007/s11157-023-09656-1
  76. 76. Rithiga R, Natarajan SK, Rathika S, Sivakumar R, Venkatachalam SR, Ramesh T. Allelopathy prospective of oil seed crops for sustainable weed management: a review. Plant Sci Today. 2024;11:5336. https://doi.org/10.14719/pst.5336

Downloads

Download data is not yet available.