Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

GC-MS profiling, antioxidant evaluation and in silico pharmacological assessment of bioactive compounds from Aspergillus welwitschiae imrd1 extract

DOI
https://doi.org/10.14719/pst.9022
Submitted
22 April 2025
Published
06-11-2025
Versions

Abstract

The present study evaluated the significance of Aspergillus welwitschiae imrd1 extracts in terms of total phenolic content (TPC) and total flavonoid content (TFC), GC-MS profiling, antioxidant activity and in silico pharmacological properties. Metabolites were extracted using methanol and ethyl acetate, where the ethyl acetate extract exhibited higher levels of TPC (8.57±0.31 mg GAE/g) and TFC (12.43±1.23 mg QE/g). Further experiment on ethyl acetate extract revealed an IC50 value of 38.79 µg/ml in the DPPH scavenging assay. GC-MS analysis detected twenty-two compounds, among which four components-methyl stearate, hexadecanoic acid methyl ester, 9,12-octadecadienoic acid methyl ester and 11-octadecenoic acid methyl ester-were selected for molecular docking against NADPH oxidase. These ligands showed desired physicochemical properties and acceptable binding affinities of -5.0 to -5.7 Kcal/mol while examined in silico. These findings are evidence of the efficacy of Aspergillus welwitschiae imrd1 extracts as a promising source of natural antioxidants in developing alternative therapeutics.

References

  1. 1. Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016;2016:1245049. https://doi.org/10.1155/2016/1245049
  2. 2. Rajak P, Ganguly A, Mandi M, Dutta A, Sarkar S, Nanda S, et al. In silico targeting of lipoxygenase, CYP2C9 and NAD(P)H oxidase by major green tea polyphenols to subvert oxidative stress. Adv Redox Res. 2023;7:100061. https://doi.org/10.1016/j.arres.2023.100061
  3. 3. Mouada H, Lanez T, Zafar I. ROS scavenging, DNA binding and NADPH oxidase inhibition potential of N’-Ferrocenylmethyl-N’-phenylpropionohydrazide using cyclic voltammetry and molecular docking. J Organomet Chem. 2024;1007:123026. https://doi.org/10.1016/j.jorganchem.2024.123026
  4. 4. Torunoğlu Eİ, Aytar EC, Aydın B, Durmaz A. Antioxidant and anti-urease activities of Cardamine bulbifera: Insights from molecular docking and density functional theory studies. Eur J Integr Med. 2024;71:102410. https://doi.org/10.1016/j.eujim.2024.102410
  5. 5. Mostofa MG, Reza AA, Khan Z, Munira MS, Khatoon MM, Kabir SR, et al. Apoptosis-inducing anti-proliferative and quantitative phytochemical profiling with in silico study of antioxidant-rich Leea aequata L. leaves. Heliyon. 2024;10(1). https://doi.org/10.1016/j.heliyon.2023.e23400
  6. 6. Santos LC, Azevedo LS, Siqueira EP, Castro AH, Lima LA. Chemical characterization, antioxidant activity and cytotoxicity of fatty acids methyl esters from Handroanthus impetiginosus (Mart. ex DC.) Mattos (Bignoniaceae) seeds. Nat Prod Res. 2024;38(4):619-23. https://doi.org/10.1080/14786419.2023.2179624
  7. 7. Wong Chin JM, Jeewon R, Fahad Alrefaei A, Puchooa D, Bahorun T, Neergheen VS. Marine-derived fungi from the genus Aspergillus (Ascomycota) and their anticancer properties. Mycology. 2025;16(2):545-92. https://doi.org/10.1080/21501203.2024.2402309
  8. 8. Arora DS, Chandra P. Antioxidant activity of Aspergillus fumigatus. Int Scholarly Res Notices. 2011;2011:619395. https://doi.org/10.5402/2011/619395
  9. 9. Chakraborty A, Majumdar S, Bhowal J. Phytochemical screening and antioxidant and antimicrobial activities of crude extracts of different filamentous fungi. Arch Microbiol. 2021;203(10):6091-108. https://doi.org/10.1007/s00203-021-02572-4
  10. 10. Lima AM, Birolli WG, Rodrigues-Filho E. Optimized production of antimicrobial compounds by endophytic Aspergillus niger CBMAI 2766. Process Biochem. 2024;143:315-22. https://doi.org/10.1016/j.procbio.2024.05.003
  11. 11. Saad FM, Mohammed DY, Zabbon AA. Investigate the efficacy of compounds found in the crude extract of the fungus Aspergillus niger on seeds germination of zucchini. Arab J Basic Appl Sci. 2024;31(1):571-9. https://doi.org/10.1080/25765299.2024.2417474
  12. 12. Quintanilha-Peixoto G, Marone MP, Raya FT, José J, Oliveira A, Fonseca PL, et al. Phylogenomics and gene selection in Aspergillus welwitschiae: Possible implications in the pathogenicity in Agave sisalana. Genomics. 2022;114(6):110517. https://doi.org/10.1016/j.ygeno.2022.110517
  13. 13. Massi FP, Iamanaka BT, Barbosa RL, Sartori D, Ferrranti L, Taniwaki MH, et al. Molecular analysis of Aspergillus section Nigri isolated from onion samples reveals the prevalence of A. welwitschiae. Braz J Microbiol. 2021;52(1):387-92. https://doi.org/10.1007/s42770-020-00390-2
  14. 14. Yu J, Yang M, Han J, Pang X. Fungal and mycotoxin occurrence, affecting factors and prevention in herbal medicines: a review. Toxin Rev. 2022;41(3):976-94. https://doi.org/10.1080/15569543.2021.1925696
  15. 15. Northolt MD, Bullerman LB. Prevention of mold growth and toxin production through control of environmental conditions. J Food Prot. 1982;45(6):519-26. https://doi.org/10.4315/0362-028X-45.6.519
  16. 16. Ribeiro MM, Rezende MI, Baldo C, Sartori D. Aspergillus welwitschiae: A potential amylases producer. Curr Microbiol. 2022;79(10):307. https://doi.org/10.1007/s00284-022-03005-1
  17. 17. Dilek Ö. Investigation of antioxidant activities of novel fluorine-based azo compounds combined with in silico molecular docking and in vitro CUPRAC method. J Indian Chem Soc. 2025;102(1):101513. https://doi.org/10.1016/j.jics.2024.101513
  18. 18. Rahman MO, Ahmed SS. Anti-angiogenic potential of bioactive phytochemicals from Helicteres isora targeting VEGFR-2 to fight cancer through molecular docking and molecular dynamics simulation. J Biomol Struct Dyn. 2023;41(15):7447-62. https://doi.org/10.1080/07391102.2022.2122568
  19. 19. Gu H, Zhang S, Liu L, Yang Z, Zhao F, Tian Y. Antimicrobial potential of endophytic fungi from Artemisia argyi and bioactive metabolites from Diaporthe sp. AC1. Front Microbiol. 2022;13:908836. https://doi.org/10.3389/fmicb.2022.908836
  20. 20. Nurunnabi TR, Sabrin F, Sharif DI, Nahar L, Sohrab MH, Sarker SD, et al. Antimicrobial activity of endophytic fungi isolated from the mangrove plant Sonneratia apetala (Buch.-Ham) from the Sundarbans mangrove forest. Adv Tradit Med. 2020;20(3):419-25. https://doi.org/10.1007/s13596-019-00422-9
  21. 21. Ayele DT, Akele ML, Melese AT. Analysis of total phenolic contents, flavonoids, antioxidant and antibacterial activities of Croton macrostachyus root extracts. BMC Chem. 2022;16(1):30. https://doi.org/10.1186/s13065-022-00822-0
  22. 22. Ling YY, Fun PS, Yeop A, Yusoff MM, Gimbun J. Assessment of maceration, ultrasonic and microwave assisted extraction for total phenolic content, total flavonoid content and kaempferol yield from Cassia alata via microstructures analysis. Mater Today Proc. 2019;19:1273-9. https://doi.org/10.1016/j.matpr.2019.11.133
  23. 23. Hua D, Zhang D, Huang B, Yi P, Yan C. Structural characterization and DPPH radical scavenging activity of a polysaccharide from Guara fruits. Carbohydr Polym. 2014;103:143-7. https://doi.org/10.1016/j.carbpol.2013.12.009
  24. 24. Hasan MM, Tasmin MS, El-Shehawi AM, Elseehy MM, Reza MA, Haque A. Rumex vesicarius L. exerts nephroprotective effect against cisplatin-induced oxidative stress. BMC Complement Med Ther. 2021;21(1):225. https://doi.org/10.1186/s12906-021-03398-9
  25. 25. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1-3):3-25. https://doi.org/10.1016/S0169-409X(96)00423-1
  26. 26. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. https://doi.org/10.1038/srep42717
  27. 27. Sander T, Freyss J, von Korff M, Reich JR, Rufener C. OSIRIS, an entirely in-house developed drug discovery informatics system. J Chem Inf Model. 2009;49(2):232-46. https://doi.org/10.1021/ci800305f
  28. 28. Banerjee P, Kemmler E, Dunkel M, Preissner R. ProTox 3.0: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024;52(W1):W513-20. https://doi.org/10.1093/nar/gkae303
  29. 29. Dassault Systèmes. BIOVIA, discovery studio visualizer. San Diego: Dassault Systèmes; 2019.
  30. 30. Morris GM, Huey R, Olson AJ. Using AutoDock for ligand–receptor docking. Curr Protoc Bioinformatics. 2008;24(1):8-14. https://doi.org/10.1002/0471250953.bi0814s24
  31. 31. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis. 1997;18(15):2714-23. https://doi.org/10.1002/elps.1150181505
  32. 32. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. In: Chemical Biology: Methods and Protocols. New York: Springer; 2014:243-50. https://doi.org/10.1007/978-1-4939-2269-7_19
  33. 33. Hamad D, El-Sayed H, Ahmed W, Sonbol H, Ramadan MA. GC-MS analysis of potentially volatile compounds of Pleurotus ostreatus polar extract: in vitro antimicrobial, cytotoxic, immunomodulatory and antioxidant activities. Front Microbiol. 2022;13:834525. https://doi.org/10.3389/fmicb.2022.834525
  34. 34. Cai S, Wang O, Wu W, Zhu S, Zhou F, Ji B, et al. Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolics content, flavonoids and antioxidant activities of subfractions from oats (Avena sativa L.). J Agric Food Chem. 2012;60(1):507-13. https://doi.org/10.1021/jf204163a
  35. 35. Cao C, Lin D, Zhou Y, Li N, Wang Y, Gong W, et al. Solid-state fermentation of Apocynum venetum L. by Aspergillus niger: effect on phenolic compounds, antioxidant activities and metabolic syndrome-associated enzymes. Front Nutr. 2023;10:1125746. https://doi.org/10.3389/fnut.2023.1125746
  36. 36. Salar RK, Certik M, Brezova V, Brlejova M, Hanusova V, Breierová E. Stress influenced increase in phenolic content and radical scavenging capacity of Rhodotorula glutinis CCY 20-2-26. 3 Biotech. 2013;3(1):53-60. https://doi.org/10.1007/s13205-012-0069-1
  37. 37. Pinar O, Rodríguez-Couto S. Biologically active secondary metabolites from white-rot fungi. Front Chem. 2024;12:1363354. https://doi.org/10.3389/fchem.2024.1363354
  38. 38. Salar RK, Purewal SS, Sandhu KS. Bioactive profile, free-radical scavenging potential, DNA damage protection activity and mycochemicals in Aspergillus awamori (MTCC 548) extracts: a novel report on filamentous fungi. 3 Biotech. 2017;7(3):164. https://doi.org/10.1007/s13205-017-0834-2
  39. 39. Yen GC, Chang YC. Medium optimization for the production of antioxidants from Aspergillus candidus. J Food Prot. 1999;62(6):657-61. https://doi.org/10.4315/0362-028X-62.6.657
  40. 40. Fu L, Xu BT, Xu XR, Gan RY, Zhang Y, Xia EQ, et al. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011;129(2):345-50. https://doi.org/10.1016/j.foodchem.2011.04.079
  41. 41. Segev A, Badani H, Kapulnik Y, Shomer I, Oren-Shamir M, Galili S. Determination of polyphenols, flavonoids and antioxidant capacity in colored chickpea (Cicer arietinum L.). J Food Sci. 2010;75(2):S115-9. https://doi.org/10.1111/j.1750-3841.2009.01477.x
  42. 42. Kaur N, Arora DS, Kalia N, Kaur M. Antibiofilm, antiproliferative, antioxidant and antimutagenic activities of an endophytic fungus Aspergillus fumigatus from Moringa oleifera. Mol Biol Rep. 2020;47(4):2901-11. https://doi.org/10.1007/s11033-020-05394-7
  43. 43. Li X, Li XM, Xu GM, Li CS, Wang BG. Antioxidant metabolites from marine alga-derived fungus Aspergillus wentii EN-48. Phytochem Lett. 2014;7:120-3. https://doi.org/10.1016/j.phytol.2013.11.008
  44. 44. Wang C, Mao W, Chen Z, Zhu W, Chen Y, Zhao C, et al. Purification, structural characterization and antioxidant property of an extracellular polysaccharide from Aspergillus terreus. Process Biochem. 2013;48(9):1395-401. https://doi.org/10.1016/j.procbio.2013.06.029
  45. 45. Amr K, Ibrahim N, Elissawy AM, Singab AN. Unearthing the fungal endophyte Aspergillus terreus for chemodiversity and medicinal prospects: a comprehensive review. Fungal Biol Biotechnol. 2023;10(1):6. https://doi.org/10.1186/s40694-023-00153-2
  46. 46. Shin HY, Kim SM, Lee JH, Lim ST. Solid-state fermentation of black rice bran with Aspergillus awamori and Aspergillus oryzae: effects on phenolic acid composition and antioxidant activity of bran extracts. Food Chem. 2019;272:235-41. https://doi.org/10.1016/j.foodchem.2018.07.174
  47. 47. Abdel-Wahhab MA, El-Nekeety AA, Hathout AS, Salman AS, Abdel-Aziem SH, Sabry BA, et al. Bioactive compounds from Aspergillus niger extract enhance the antioxidant activity and prevent the genotoxicity in aflatoxin B1-treated rats. Toxicon. 2020;181:57-68. https://doi.org/10.1016/j.toxicon.2020.04.103
  48. 48. Shah ZA, Khan K, Rashid HU, Shah T, Jaremko M, Iqbal Z. Insights into metabolic and pharmacological profiling of Aspergillus ficuum through bioinformatics and experimental techniques. BMC Microbiol. 2022;22(1):295. https://doi.org/10.1186/s12866-022-02693-w
  49. 49. Vanitha V, Vijayakumar S, Nilavukkarasi M, Punitha VN, Vidhya E, Praseetha PK. Heneicosane—a novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Ind Crops Prod. 2020;154:112748. https://doi.org/10.1016/j.indcrop.2020.112748
  50. 50. Agada R, Thagriki D, Lydia DE, Khusro A, Alkahtani J, Al Shaqha MM, et al. Antioxidant and anti-diabetic activities of bioactive fractions of Carica papaya seeds extract. J King Saud Univ Sci. 2021;33(2):101342. https://doi.org/10.1016/j.jksus.2021.101342
  51. 51. Nugroho A, Harahap IA, Ardiansyah A, Bayu A, Rasyid A, Murniasih T, et al. Antioxidant and antibacterial activities in 21 species of Indonesian sea cucumbers. J Food Sci Technol. 2022:239-48. https://doi.org/10.1007/s13197-021-05007-6
  52. 52. Uddin SJ, Grice D, Tiralongo E. Evaluation of cytotoxic activity of patriscabratine, tetracosane and various flavonoids isolated from the Bangladeshi medicinal plant Acrostichum aureum. Pharm Biol. 2012;50(10):1276-80. https://doi.org/10.3109/13880209.2012.673628
  53. 53. Afroz Shoily MS, Islam ME, Rasel NM, Parvin S, Barmon J, Hasan Aqib A, et al. Unveiling the biological activities of Heliotropium indicum L. plant extracts: anti-inflammatory activities, GC–MS analysis and in-silico molecular docking. Sci Rep. 2025;15(1):3285. https://doi.org/10.1038/s41598-024-79559-w
  54. 54. Roy RN. Bioactive natural derivatives of phthalate ester. Crit Rev Biotechnol. 2020;40(7):913-29. https://doi.org/10.1080/07388551.2020.1789838
  55. 55. Jian-Ping MA, Zhi-Bing GU, Ling JI, Ying-Dong LI. Phytochemical progress made in investigations of Angelica sinensis (Oliv.) Diels. Chin J Nat Med. 2015;13(4):241-9. https://doi.org/10.1016/S1875-5364(15)30010-8
  56. 56. Kdimy A, Kim SJ, Ali Z, Khan MI, Tripathi SK, El Hajjaji S, et al. Isolation of two plasticizers, bis(2-ethylhexyl) terephthalate and bis(2-ethylhexyl) phthalate, from Capparis spinosa L. leaves. Chem Biodivers. 2023;9:e202300903. https://doi.org/10.1002/cbdv.202300903
  57. 57. Cho JY, Choi JS, Kang SE, Kim JK, Shin HW, Hong YK. Isolation of antifouling active pyroglutamic acid, triethyl citrate and di-n-octylphthalate from the brown seaweed Ishige okamurae. J Appl Phycol. 2005;17(5):431-5. https://doi.org/10.1007/s10811-005-0460-y
  58. 58. Rajalakshmi R, Lalitha P, Sharma SC, Rajiv A, Chithambharan A, Ponnusamy A. In silico studies: physicochemical properties, drug score, toxicity predictions and molecular docking of organosulphur compounds against diabetes mellitus. J Mol Recognit. 2021;34(11):e2925. https://doi.org/10.1002/jmr.2925
  59. 59. Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1(1):55-68. https://doi.org/10.1021/cc9800071
  60. 60. Jorgensen WL, Duffy EM. Prediction of drug solubility from structure. Adv Drug Deliv Rev. 2002;54(3):355-66. https://doi.org/10.1016/S0169-409X(02)00008-X
  61. 61. Amir S, Abid M, Nadeem H, Tipu MK, Irshad N. The nephroprotective potential of selected synthetic compound against gentamicin induced nephrotoxicity. BMC Pharmacol Toxicol. 2024;25(1):68. https://doi.org/10.1186/s40360-024-00765-3
  62. 62. Fan J, Fu A, Zhang L. Progress in molecular docking. Quant Biol. 2019;7(2):83-9. https://doi.org/10.1007/s40484-019-0172-y
  63. 63. Aitha S, Thumma V, Matta R, Ambala S, Jyothi K, Manda S, et al. Antioxidant activity of novel 4H-chromene tethered 1,2,3-triazole analogues: synthesis and molecular docking studies. Results Chem. 2023;5:100987. https://doi.org/10.1016/j.rechem.2023.100987
  64. 64. Guzik TJ, Harrison DG. Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov Today. 2006;11(11-12):524-33. https://doi.org/10.1016/j.drudis.2006.04.003

Downloads

Download data is not yet available.