Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Electrospinning applications in sustainable agriculture: Enhancing soil health, seed coatings and post-harvest antimicrobial protection

DOI
https://doi.org/10.14719/pst.9087
Submitted
25 April 2025
Published
07-08-2025
Versions

Abstract

Nanotechnology holds significant potential in agriculture, contributing to various applications such as nanofertilizers, nanopesticides, nanoherbicides, nanosensors and more recently, electrospun nanofibers. Among such advancements, electrospinning has emerged as a versatile and cost-effective technique for fabricating nanofibers, offering significant potential to enhance sustainability in agricultural practices. Recent applications of electrospun fibers have primarily focused on drug delivery, wound dressings and seed coatings infused with growth hormones. These nanofibers exhibit notable properties such as a high surface-area-to-volume ratio, excellent porosity and the ability to facilitate controlled release of active compounds. Encapsulating microorganisms and agrochemicals within electrospun fibers offers an environmentally friendly approach to improve soil health. By forming a protective layer, the electrospun nanofibers help safeguard seeds against abiotic factors such as drought and temperature fluctuations, as well as biotic threats like pathogens and pests. Furthermore, embedding natural or synthetic antimicrobial agents into electrospun films offers an eco-friendly solution for post-harvest protection by effectively minimizing spoilage and the risk of pathogen invasion. This review emphasizes the diverse roles of electrospun nanofibers in sustainable agriculture, including soil enhancement, seed improvement and post-harvest protection, while also promoting eco-friendly practices using biodegradable polymers and bioactive agents.

References

  1. 1. Tripathy GD, Roy B, Yadav M. Sustainable agriculture: negotiating tradition and modernity. Vantage: Journal of Thematic Analysis. 2021;2(2):1-3. https://doi.org/10.52253/vjta.2021.v02i02.01
  2. 2. Penuelas J, Coello F, Sardans J. A better use of fertilizers is needed for global food security and environmental sustainability. Agriculture & Food Security. 2023;12(1):1-9. https://doi.org/10.1186/s40066-023-00409-5
  3. 3. Gutie´rrez CsA, Ledezma-Delgadillo A, Juárez-Luna G, Neri-Torres EE, Ibanez JG, Quevedo InR. Production, mechanisms, and performance of controlled-release fertilizers encapsulated with biodegradable-based coatings. ACS Agricultural Science & Technology. 2022;2(6):1101-25. https://doi.org/10.1021/acsagscitech.2c00077
  4. 4. Colín-Orozco J, Colín-Orozco E, Valdivia-Barrientos R. Production of nanofibers by electrospinning as carriers of agrochemical. Fibers. 2024;12(8):64. https://doi.org/10.3390/fib12080064
  5. 5. Shepa I, Mudra E, Dusza J. Electrospinning through the prism of time. Materials Today Chemistry. 2021;21:100543. https://doi.org/10.1016/j.mtchem.2021.100543
  6. 6. Xue J, Xie J, Liu W, Xia Y. Electrospun nanofibers: new concepts, materials, and applications. Accounts of Chemical Research. 2017;50(8):1976-87. https://doi.org/10.1021/acs.accounts.7b00218
  7. 7. Han D, Steckl AJ. Coaxial electrospinning formation of complex polymer fibers and their applications. ChemPlusChem. 2019;84(10):1453-97. https://doi.org/10.1002/cplu.201900281
  8. 8. Ibrahim HM, Klingner A. A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing. 2020;90:106647. https://doi.org/10.1016/j.polymertesting.2020.106647
  9. 9. Patel S, Hota G. Electrospun polymer composites and ceramics nanofibers: Synthesis and environmental remediation applications. In: Design, fabrication, and characterization of multifunctional nanomaterials. Elsevier; 2022. p. 503-25. https://doi.org/10.1016/B978-0-12-820558-7.00019-4
  10. 10. Medeiros GB, Lima FdA, de Almeida DS, Guerra VG, Aguiar ML. Modification and functionalization of fibers formed by electrospinning: a review. Membranes. 2022;12(9):861. https://doi.org/10.3390/membranes12090861
  11. 11. Fernando W, Munaweera I, Kottegoda N, editors. Preparation and characterization of NPK nutrient loaded electrospun cellulose acetate nanofiber mat to be used as a slow-release fertilizer. In: Proceedings of International Forestry and Environment Symposium; 2023. https://doi.org/10.1021/acs.iecr.3c03444
  12. 12. Haraguchi R, Demura M, Kawakita H, Oishi Y, Narita T. Photosynthetic nano fibers: Living microalgae packaging into polyvinyl alcohol nanofibers using an electrospinning method. Journal of Applied Polymer Science. 2024;141(19):e55348. https://doi.org/10.1002/app.55348
  13. 13. Ramamoorthy T, Soloman AM, Annamalai D, Thiruppathi V, Srinivasan P, Masilamani D, et al. Facile crosslinking of PVA scaffolds using quercetin for biomaterial applications. Materials Letters. 2024;364:136307. https://doi.org/10.1016/j.matlet.2024.136307
  14. 14. Rubel RI, Wei L, editors. Improve biochar-based controlled release fertilizer’s performance by coating multiple layers of polylactic acid. In: 2021 ASABE Annual International Virtual Meeting. American Society of Agricultural and Biological Engineers; 2021. https://doi.org/10.13031/aim.202100092
  15. 15. Eskitoros-Togay SM, Bulbul YE, Dilsiz N. Controlled release of doxycycline within core/shell poly (e-caprolactone)/poly (ethylene oxide) fibers via coaxial electrospinning. Journal of Applied Polymer Science. 2020;137(42):49273. https://doi.org/10.1002/app.49273
  16. 16. Cao Y, Liu F, Chen Y, Yu T, Lou D, Guo Y, et al. Drug release from core-shell PVA/silk fibroin nanoparticles fabricated by one-step electrospraying. Scientific Reports. 2017;7(1):11913. https://doi.org/10.1038/s41598-017-12351-1
  17. 17. Ji X, Wang W, Li W, Zhao X, Liu A, Wang X, et al. pH-responsible self-healing performance of coating with dual-action core-shell electrospun fibers. Journal of the Taiwan Institute of Chemical Engineers. 2019;104:227-39. https://doi.org/10.1016/j.jtice.2019.06.022
  18. 18. Corvaglia I, Fiorilli S, Vitale-Brovarone C. Electrospun matrices for sustained drug release made by a PCL-chitosan blend shell and a PVA core. Materials Letters. 2024;371:136894. https://doi.org/10.1016/j.matlet.2024.136894
  19. 19. Elkalla E, Khizar S, Tarhini M, Lebaz N, Zine N, Jaffrezic-Renault N, et al. Core-shell micro/nanocapsules: from encapsulation to applications. Journal of Microencapsulation. 2023;40(3):125-56. https://doi.org/10.1080/02652048.2023.2178538
  20. 20. Abd El-Ghany NM. Pheromones and chemical communication in insects. In: Pests, weeds and diseases in agricultural crop and animal husbandry production. Intech; 2020. p. 1-13. https://doi.org/10.5772/intechopen.92384
  21. 21. Kumar R. Management of the pests of crops through insect sex pheromones. In: Biopesticides in organic farming: CRC Press; 2021. p. 197-200. https://doi.org/10.1201/9781003027690-45
  22. 22. Feng X, Li J, Zhang X, Liu T, Ding J, Chen X. Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. Journal of Controlled Release. 2019;302:19-41. https://doi.org/10.1016/j.jconrel.2019.03.020
  23. 23. Khoshnevisan K, Maleki H, Samadian H, Shahsavari S, Sarrafzadeh MH, Larijani B, et al. Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances. Carbohydrate Polymers. 2018;198:131-41. https://doi.org/10.1016/j.carbpol.2018.06.072
  24. 24. Xiang HM, Wei XH, Li YR, Zhang BJ, Li M, Ma RY. Electrospun nanofibers as controlled release systems for the combined pheromones of Grapholita molesta and Cydia pomonella. Pest Management Science. 2025;81(4):2257-65. https://doi.org/10.1002/ps.8623
  25. 25. Bayoumy MH, El-Metwally MM, El-Adly RA, Majerus TM. Improving the lifetime efficiency of trimedlure-dispensing system in trapping the fruit fly Ceratitis capitata using polyethylene matrix. Journal of Economic Entomology. 2020;113(1):315-20. https://doi.org/10.1093/jee/toz275
  26. 26. Yadav A, Yadav K. Nanoparticle-based plant disease management: tools for sustainable agriculture. In: Nanobiotechnology applications in plant protection. Springer, Cham; 2018. p. 29-61. https://doi.org/10.1007/978-3-319-91161-8_2
  27. 27. Prasad R, Bhattacharyya A, Nguyen QD. Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Frontiers in Microbiology. 2017;8:1014. https://doi.org/10.3389/fmicb.2017.01014
  28. 28. Agriopoulou S, Tarapoulouzi M, Varzakas T, Jafari SM. Application of encapsulation strategies for probiotics: from individual loading to co-encapsulation. Microorganisms. 2023;11(12):2896. https://doi.org/10.3390/microorganisms11122896
  29. 29. Masillamani A, Sabarinathan K, Gomathy M, Kumutha K, Prasanthrajan M, Kannan J, et al. Sustainable encapsulation of bio-active agents and microorganisms in electrospun nanofibers: A comprehensive review. Plant Science Today. 2024;11:5590. https://doi.org/10.14719/pst.5590
  30. 30. Diep E, Schiffman JD. Electrospinning living bacteria: a review of applications from agriculture to health care. ACS Applied Bio Materials. 2023;6(3):951-64. https://doi.org/10.1021/acsabm.2c01055
  31. 31. Shangguan W, Li S, Cao L, Wei M, Wang Z, Xu H. Electrospinning and nanofibers: building drug delivery systems and potential in pesticide delivery. Materials Today Communications. 2022;33:104399. https://doi.org/10.1016/j.mtcomm.2022.104399
  32. 32. Madhavi V, Reddy A, Madhavi G, Reddy NB, editors. Nanoencapsulation of pesticides: Sustainable perspective in agriculture. AIP conference proceedings. AIP Publishing; 2020. https://doi.org/10.1063/5.0018027
  33. 33. Bombo AB, Pereira AES, Lusa MG, de Medeiros Oliveira E, de Oliveira JL, Campos EVR, et al. A mechanistic view of interactions of a nanoherbicide with target organism. Journal of Agricultural and Food Chemistry. 2019;67(16):4453-62. https://doi.org/10.1021/acs.jafc.9b00806
  34. 34. Singh RP, Handa R, Manchanda G. Nanoparticles in sustainable agriculture: An emerging opportunity. Journal of Controlled Release. 2021;329:1234-48. https://doi.org/10.1016/j.jconrel.2020.10.051
  35. 35. Parameswari P, Belagalla N, Singh BV, Abhishek G, Rajesh G, Katiyar D, et al. Nanotechnology-based sensors for real-time monitoring and assessment of soil health and quality: A review. Asian Journal of Soil Science and Plant Nutrition. 2024;10(2):157-73. https://doi.org/10.9734/ajsspn/2024/v10i2272
  36. 36. Zhang S, Jia Z, Liu T, Wei G, Su Z. Electrospinning nanoparticles-based materials interfaces for sensor applications. Sensors. 2019;19(18):3977. https://doi.org/10.3390/s19183977
  37. 37. Song J, Lin X, Ee LY, Li SFY, Huang M. A review on electrospinning as versatile supports for diverse nanofibers and their applications in environmental sensing. Advanced Fiber Materials. 2023;5(2):429-60. https://doi.org/10.1007/s42765-022-00237-5
  38. 38. Fan Y, Wang X, Funk T, Rashid I, Herman B, Bompoti N, et al. A critical review for real-time continuous soil monitoring: Advantages, challenges, and perspectives. Environmental Science & Technology. 2022;56(19):13546-64. https://doi.org/10.1021/acs.est.2c03562
  39. 39. Oliveira DM, Santos RS, Chizzotti FH, Bretas IL, Franco AL, Lima RP, et al. Crop, livestock, and forestry integration to reconcile soil health, food production, and climate change mitigation in the Brazilian Cerrado: A review. Geoderma Regional. 2024:e00796. https://doi.org/10.1016/j.geodrs.2024.e00796
  40. 40. Halicka K, Cabaj J. Electrospun nanofibers for sensing and biosensing applications—a review. International Journal of Molecular Sciences. 2021;22(12):6357. https://doi.org/10.3390/ijms22126357
  41. 41. Lopez-Torres D, Elosua C, Arregui FJ. Optical fiber sensors based on microstructured optical fibers to detect gases and volatile organic compounds—A review. Sensors. 2020;20(9):2555. https://doi.org/10.3390/s20092555
  42. 42. Calvez JL, Ay E. Introduction to this special section: Advancements in sensor technology. The Leading Edge. 2023;42(5):308-.https://doi.org/10.1190/tle42050308.1
  43. 43. Chakkalakkal ND, Thomas M, Chittillapilly PS, Sujith A, Anjali P. Electrospun polymer nanocomposite membrane as a promising seed coat for controlled release of agrichemicals and improved germination: Towards a better agricultural prospect. Journal of Cleaner Production. 2022;377:134479. https://doi.org/10.1016/j.jclepro.2022.134479
  44. 44. Nguyen TD, Roh S, Nguyen MTN, Lee JS. Structural control of nanofibers according to electrospinning process conditions and their applications. Micromachines. 2023;14(11):2022. https://doi.org/10.3390/mi14112022
  45. 45. Javed T, Afzal I, Shabbir R, Ikram K, Zaheer MS, Faheem M, et al. Seed coating technology: An innovative and sustainable approach for improving seed quality and crop performance. Journal of the Saudi Society of Agricultural Sciences. 2022;21(8):536-45. https://doi.org/10.1016/j.jssas.2022.03.003
  46. 46. Zaim N, Rahman S, Tan H, Bakar N, Osman M, Aani S, et al., editors. Synthesis and properties of CA/ZnONPs electrospun nanofiber as seed coating to enhance germination of aerobic rice seed. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing; 2022. https://doi.org/10.1088/1755-1315/1114/1/012072
  47. 47. Afzal I, Javed T, Amirkhani M, Taylor AG. Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture. 2020;10(11):526. https://doi.org/10.3390/agriculture10110526
  48. 48. Zheng L, Seidi F, Liu Y, Wu W, Xiao H. Polymer-based and stimulus-responsive carriers for controlled release of agrochemicals. European Polymer Journal. 2022;177:111432. https://doi.org/10.1016/j.eurpolymj.2022.111432
  49. 49. Rostamabadi H, Demirkesen I, Colussi R, Roy S, Tabassum N, de Oliveira Filho JG, et al. Recent trends in the application of films and coatings based on starch, cellulose, chitin, chitosan, xanthan, gellan, pullulan, Arabic gum, alginate, pectin, and carrageenan in food packaging. Food Frontiers. 2024;5(2):350-91. https://doi.org/10.1002/fft2.342
  50. 50. Sen SK, Das D. A sustainable approach in agricultural chemistry towards alleviation of plant stress through chitosan and nano-chitosan priming. Discover Chemistry. 2024;1(1):44. https://doi.org/10.1007/s44371-024-00046-2
  51. 51. Ramaprabha K, Kumar V, Saravanan P, Rajeshkannan R, Rajasimman M, Kamyab H, et al. Exploring the diverse applications of carbohydrate macromolecules in food, pharmaceutical, and environmental technologies. Environmental Research. 2024;240:117521. https://doi.org/10.1016/j.envres.2023.117521
  52. 52. Mukiri C, Raja K, Senthilkumar M, Subramanian K, Govindaraju K, Pradeep D, et al. Immobilization of beneficial microbe Methylobacterium aminovorans in electrospun nanofibre as potential seed coatings for improving germination and growth of groundnut Arachis hypogaea. Plant Growth Regulation. 2022:1-9. https://doi.org/10.21203/rs.3.rs-231057/v1
  53. 53. Korbecka-Glinka GK, Wisniewska-Wrona M, Kopania E. The use of natural polymers for treatments enhancing sowing material. Polimery. 2021;66(1):11-20. https://doi.org/10.14314/polimery.2021.1.2
  54. 54. Xing Y, Li W, Wang Q, Li X, Xu Q, Guo X, et al. Antimicrobial nanoparticles incorporated in edible coatings and films for the preservation of fruits and vegetables. Molecules. 2019;24(9):1695. https://doi.org/10.3390/molecules24091695
  55. 55. Gunawan C, Faiz MB, Mann R, Ting SR, Sotiriou GA, Marquis CP, et al. Nanosilver targets the bacterial cell envelope: the link with generation of reactive oxygen radicals. ACS Applied Materials & Interfaces. 2020;12(5):5557-68. https://doi.org/10.1021/acsami.9b20193
  56. 56. de Dicastillo CL, Correa MG, Martínez FB, Streitt C, Galotto MJ. Antimicrobial effect of titanium dioxide nanoparticles. In: Mare? M, Lim SHE, Lai K-S, Cristina R-T, editors. Antimicrobial resistance - a one health perspective. Intech; 2020. https://doi.org/10.5772/intechopen.90891
  57. 57. Santos MIS, Marques C, Mota J, Pedroso L, Lima A. Applications of essential oils as antibacterial agents in minimally processed fruits and vegetables—A review. Microorganisms. 2022;10(4):760. https://doi.org/10.3390/microorganisms10040760
  58. 58. Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R, Hernández-Ramírez JO, et al. Lactoferrin and its derived peptides: an alternative for combating virulence mechanisms developed by pathogens. Molecules. 2020;25(24):5763. https://doi.org/10.3390/molecules25245763
  59. 59. Zhang M, Ahmed A, Xu L. Electrospun nanofibers for functional food packaging application. Materials. 2023;16(17):5937. https://doi.org/10.3390/ma16175937
  60. 60. Tavares KM, de Campos A, Luchesi BR, Resende AA, de Oliveira JE, Marconcini JM. Effect of carboxymethyl cellulose concentration on mechanical and water vapor barrier properties of corn starch films. Carbohydrate Polymers. 2020;246:116521. https://doi.org/10.1016/j.carbpol.2020.116521
  61. 61. Ansarifar E, Moradinezhad F. Encapsulation of thyme essential oil using electrospun zein fiber for strawberry preservation. Chemical and Biological Technologies in Agriculture. 2022;9:1-11. https://doi.org/10.1186/s40538-021-00267-y
  62. 62. Moradinezhad F, Hedayati S, Ansarifar E. Assessment of zataria multiflora essential oil—incorporated electrospun polyvinyl alcohol fiber mat as active packaging. Polymers. 2023;15(4):1048. https://doi.org/10.3390/polym15041048
  63. 63. Niu B, Zhan L, Shao P, Xiang N, Sun P, Chen H, et al. Electrospinning of zein-ethyl cellulose hybrid nanofibers with improved water resistance for food preservation. International Journal of Biological Macromolecules. 2020;142:592-9. https://doi.org/10.1016/j.ijbiomac.2019.09.134
  64. 64. Cui X, You Y, Ding Y, Sun C, Liu B, Wang X, et al. Improving the function of electrospun film by natural substance for active packaging application of fruits and vegetables. LWT. 2024;191:115683. https://doi.org/10.1016/j.lwt.2023.115683
  65. 65. Hua L, Li N, Zhang W, Ruan C-Q, Zeng K. Photocatalytic ethylene scavenging for fresh produce preservation: a comprehensive review. Trends in Food Science & Technology. 2024;150:104604. https://doi.org/10.1016/j.tifs.2024.104604
  66. 66. Maldonado A, Aguilar T, Hauser C, Wehnert G, Söthje D, Schlachter H, et al. Ethylene scavenging films based on ecofriendly plastic materials and nano-TiO2: preparation, characterization, and in vivo evaluation. Polymers. 2024;16(6):853. https://doi.org/10.3390/polym16060853
  67. 67. Blanco M, Monteserín C, Angulo A, Pérez-Márquez A, Maudes J, Murillo N, et al. TiO2-doped electrospun nanofibrous membrane for photocatalytic water treatment. Polymers. 2019;11(5):747. https://doi.org/10.3390/polym11050747
  68. 68. Shirazi MMA, Bazgir S, Meshkani F. Electrospun nanofibrous membranes for water treatment. In: Advances in Membrane Technologies. Vol. 57(3). Intech; 2020. p. 467-504. http://doi.org/10.5772/intechopen.87948
  69. 69. Suja P, Reshmi C, Sagitha P, Sujith A. Electrospun nanofibrous membranes for water purification. Polymer Reviews. 2017;57(3):467-504. https://doi.org/10.1080/15583724.2017.1309664
  70. 70. Zheng H, Lu H, Li S, Niu J, Leong YK, Zhang W, et al. Recent advances in electrospinning-nanofiber materials used in advanced oxidation processes for pollutant degradation. Environmental Pollution. 2024;344:123223. https://doi.org/10.1016/j.envpol.2023.123223
  71. 71. Maduna L, Patnaik A. Challenges Associated with the production of nanofibers. Processes. 2024;12(10):2100. https://doi.org/10.3390/pr12102100
  72. 72. Khatri Z, Ahmed F, Kim IS. Green electrospinning of sustainable nanofibers: a sustainable frontier for next-generation materials. Mehran University Research Journal of Engineering & Technology. 2023;42(3):16-24. https://doi.org/10.22581/muet1982.2303.02
  73. 73. Munaweera I, Fernando M, Kottegoda N. Potential applications of electrospun nanofibers in agriculture. Vidyodaya Journal of Science. 2023;1(s1). https://doi.org/10.31357/vjs.v1is1.6702
  74. 74. Ghosh A, Orasugh JT, Ray SS, Chattopadhyay D. Integration of 3D printing–coelectrospinning: Concept shifting in biomedical applications. ACS Omega. 2023;8(31):28002-25. https://doi.org/10.1021/acsomega.3c03920
  75. 75. Ali MA, Jiang H, Mahal NK, Weber RJ, Kumar R, Castellano MJ, et al. Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sensors and Actuators B: Chemical. 2017;239:1289-99. https://doi.org/10.1016/j.snb.2016.09.101
  76. 76. Hellmann C, Greiner A, Wendorff JH. Design of pheromone releasing nanofibers for plant protection. Polymers for Advanced Technologies. 2011;22(4):407-13. https://doi.org/10.1002/pat.1532
  77. 77. De Gregorio PR, Michavila G, Ricciardi Muller L, de Souza Borges C, Pomares MF, Saccol de Sá EL, et al. Beneficial rhizobacteria immobilized in nanofibers for potential application as soybean seed bioinoculants. PLoS One. 2017;12(5):e0176930. https://doi.org/10.1371/journal.pone.0176930
  78. 78. Roshani B, Tavanai H, Morshed M, Khajehali J. Controlled release of thiram pesticide from poly (L-lactic acid) nanofibers. The Journal of The Textile Institute. 2017;108(9):1504-9. https://doi.org/10.1080/00405000.2016.1258950
  79. 79. Bisotto-De-Oliveira R, Morais RM, Roggia I, Silva SJ, Sant’ana J, Pereira CN. Polymers nanofibers as vehicles for the release of the synthetic sex pheromone of Grapholita molesta (Lepidoptera, Tortricidae). Revista Colombiana de Entomología. 2015;41(2):262-9.
  80. 80. Migliorini FL, Sanfelice RC, Mercante LA, Facure MH, Correa DS. Electrochemical sensor based on polyamide 6/polypyrrole electrospun nanofibers coated with reduced graphene oxide for malathion pesticide detection. Materials Research Express. 2020;7(1):015601. https://doi.org/10.1088/2053-1591/ab5744
  81. 81. Chamuah N, Bhuyan N, Das PP, Ojah N, Choudhary AJ, Medhi T, et al. Gold-coated electrospun PVA nanofibers as SERS substrate for detection of pesticides. Sensors and Actuators B: Chemical. 2018;273:710-7. https://doi.org/10.1016/j.snb.2018.06.079
  82. 82. Bao J, Hou C, Dong Q, Ma X, Chen J, Huo D, et al. ELP-OPH/BSA/TiO2 nanofibers/c-MWCNTs based biosensor for sensitive and selective determination of p-nitrophenyl substituted organophosphate pesticides in aqueous system. Biosensors and Bioelectronics. 2016;85:935-42. https://doi.org/10.1016/j.bios.2016.05.094
  83. 83. Hussain Z, Khan MA, Iqbal F, Raffi M, Hafeez FY. Electrospun microbial-encapsulated composite-based plasticized seed coat for rhizosphere stabilization and sustainable production of canola (Brassica napus L.). Journal of Agricultural and Food Chemistry. 2019;67(18):5085-95. https://doi.org/10.1021/acs.jafc.8b06505
  84. 84. Zhai MY, Feng K, Hu TG, Zong MH, Wu H. Development of a novel nano-based detection card by electrospinning for rapid and sensitive analysis of pesticide residues. Journal of the Science of Food and Agriculture. 2020;100(12):4400-8. https://doi.org/10.1002/jsfa.10477
  85. 85. Xu T, Ma C, Aytac Z, Hu X, Ng KW, White JC, et al. Enhancing agrichemical delivery and seedling development with biodegradable, tunable, biopolymer-based nanofiber seed coatings. ACS Sustainable Chemistry & Engineering. 2020;8(25):9537-48. https://doi.org/10.1021/acssuschemeng.0c02696
  86. 86. Jung J, Deng Z, Simonsen J, Bastías RM, Zhao Y. Development and preliminary field validation of water-resistant cellulose nanofiber based coatings with high surface adhesion and elasticity for reducing cherry rain-cracking. Scientia Horticulturae. 2016;200:161-9. https://doi.org/10.1016/j.scienta.2016.01.016
  87. 87. Damasceno R, Roggia I, Pereira C, de Sá E. Rhizobia survival in seeds coated with polyvinyl alcohol (PVA) electrospun nanofibres. Canadian Journal of Microbiology. 2013;59(11):716-9. https://doi.org/10.1139/cjm-2013-0508
  88. 88. Bansal P, Bubel K, Agarwal S, Greiner A. Water-stable all-biodegradable microparticles in nanofibers by electrospinning of aqueous dispersions for biotechnical plant protection. Biomacromolecules. 2012;13(2):439-44. https://doi.org/10.1021/bm2014679
  89. 89. Xu G, Zhang S, Zhang Q, Gong L, Dai H, Lin Y. Magnetic functionalized electrospun nanofibers for magnetically controlled ultrasensitive label-free electrochemiluminescent immune detection of aflatoxin B1. Sensors and Actuators B: Chemical. 2016;222:707-13. https://doi.org/10.1016/j.snb.2015.08.129
  90. 90. De Cesare F, Di Mattia E, Zussman E, Macagnano A. A 3D soil-like nanostructured fabric for the development of bacterial biofilms for agricultural and environmental uses. Environmental Science: Nano. 2020;7(9):2546-72. https://doi.org/10.1039/D0EN00268B
  91. 91. Castañeda L, Genro C, Roggia I, Bender S, Bender R, Pereira C. Innovative rice seed coating (Oryza sativa) with polymer nanofibres and microparticles using the electrospinning method. Journal of Research Updates in Polymer Science. 2014;3(1):33-9. https://doi.org/10.6000/1929-5995.2014.03.01.5
  92. 92. Bisotto-de-Oliveira R, De Jorge B, Roggia I, Sant'Ana J, Pereira C. Nanofibers as a vehicle for the synthetic attactant trimedlure to be used for Ceratitis capitata wied:(Díptera, tethritidae) capture. Journal of Research Updates in Polymer Science. 2014;3(1):40. https://doi.org/10.6000/1929-5995.2014.03.01.6

Downloads

Download data is not yet available.