Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Unravelling genetic relationships in spring mung bean genotypes using morphological and molecular markers under the foothill condition of Manipur

DOI
https://doi.org/10.14719/pst.9126
Submitted
26 April 2025
Published
26-09-2025 — Updated on 16-10-2025
Versions

Abstract

Mung bean (Vigna radiata) is a warm-season legume widely grown in tropical and subtropical regions. It is a key source of proteins, carbohydrates and antioxidants in Asian diets. It is well-suited for SSR-based diversity studies. This study sought to evaluate the genetic diversity among twenty-seven mung bean genotypes to support the breeding of improved varieties with enhanced yield and resilience. By integrating morphological and agronomic trait analysis with molecular characterization using highly polymorphic Simple Sequence Repeat (SSR) markers, we aimed to uncover both phenotypic and genetic variation. These insights are expected to guide the selection of diverse parental lines for hybridization programs, fostering the development of robust, high-performing mung bean cultivars. Significant genetic variability was recorded among studied genotypes. The genotypes were grouped into seven clusters; Cluster I included seventeen genotypes. Intra-cluster distances ranged from 0.00 to 9.70 and inter-cluster distances varied from 10.39 to 27.11. Protein percentage (27.5 %) contributed most to divergence. Out of Thirteen primers ten (76.92 %) exhibited polymorphism. Thirteen SSR primers produced amplicons ranging from 100 to 413 bp. An average of 3.2 alleles per locus was observed, highest six alleles were recorded for VrSSR61. PIC ranged from 0.20 (DMBSSR080) to 0.79 (VrSSR61). UPGMA cluster analysis of twenty-seven Vigna radiata genotypes clustered into two main clusters (A and B), each with two sub-clusters (A-I, A-II, B-I, B-II). Similarity coefficients ranged from 0.46 to 0.97. Two markers viz., DMBSSR125 and DMBSSR 130 were identified and associated with YVMV and powdery mildew respectively. Future breeding programs should integrate MAS to efficiently screen and select desired resistant genotypes at early developmental stages, significantly reducing the time and resources typically required for traditional phenotypic screening. The identified clusters and inter-cluster distances provide a clear roadmap for selecting genetically diverse parents for targeted hybridization programs.

References

  1. 1. Yimram T, Somta P, Srinives P. Genetic variation in cultivated mung bean germplasm and its implication in breeding for high yield. Field Crops Res. 2009;112(2-3):260-6. https://doi.org/10.1016/j.fcr.2009.03.006
  2. 2. Mukesh PL, Dhaked SK, Kumar S, Yumnam S, Choudhary SL. Principal component analysis approach to identify genetic variation in spring mung bean under the foothill condition of Manipur India. Plant Arch. 2025;25(1):171. https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.1.171
  3. 3. Mukesh SY, Laishram P, Kumar H, Senjam P, Singh LNK, Gopimohan N, et al. Genetic basis of yield variation in spring mung bean (Vigna radiata L.): a correlation and path analysis study. Int J Bio-resour Stress Manag. 2024;15:1-7. https://doi.org/10.23910/1.2024.5749
  4. 4. Parida A, Raina SN, Narayan RK. Quantitative DNA variation between and within chromosome complements of Vigna species (Fabaceae). Genetica. 1990;82(2):125-33. https://doi.org/10.1007/BF00124642
  5. 5. Lakhanpaul S, Babu C. Symposium on Grain Legumes. New Delhi: India; 1991. p. 47-57. https://doi.org/10.1007/978-981-19-4169-6_29
  6. 6. Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha BK, et al. Genome sequence of mung bean and insights into evolution within Vigna species. Nat Commun. 2014;5:5443. https://doi.org/10.1038/ncomms6443
  7. 7. Somta P, Musch W, Kongsamai B, Chanprame S, Nakasathien S, Toojinda T, et al. New microsatellite markers isolated from mungbean (Vigna radiata (L.) Wilczek). Mol Ecol Resour. 2008;8(5):1155-7. https://doi.org/10.1111/j.1755-0998.2008.02219.x
  8. 8. Ilyas N, Ambreen F, Batool N, Arshad M, Mazhar R, Bibi F, et al. Contribution of nitrogen fixed by mung bean to the following wheat crop. Commun Soil Sci Plant Anal. 2018;49(2):148-58. https://doi.org/10.1080/00103624.2017.1421215
  9. 9. Van Haeften S, Dudley C, Kang Y, Smith D, Nair RM, Douglas CA, et al. Building a better mung bean: breeding for reproductive resilience in a changing climate. Food Energy Secur. 2023;12(6):e467. https://doi.org/10.1002/fes3.467
  10. 10. Tabasum A, Hameed A, Asghar MJ. Exploring the genetic divergence in mung bean (Vigna radiata L.) germplasm using multiple molecular marker systems. Mol Biotechnol. 2020;62(11):547-56. https://doi.org/10.1007/s12033-020-00270-y
  11. 11. Somta P, Laosatit K, Yuan X, Chen X. Thirty years of mung bean genome research: where do we stand and what have we learned? Front Plant Sci. 2022;13:944721. https://doi.org/10.3389/fpls.2022.944721
  12. 12. Lavanya GR, Srivastava J, Ranade SA. Molecular assessment of genetic diversity in mung bean germplasm. J Genet. 2008;87:65-74. https://doi.org/10.1007/s12041-008-0009-3
  13. 13. Karp A, Edwards KJ, Bruford M, Funk S, Vosman B, Morgante M, et al. Molecular technologies for biodiversity evaluation: opportunities and challenges. Nat Biotechnol. 1997;15(7):625-8. https://doi.org/10.1038/nbt0797-625
  14. 14. Mahalanobis PC. The generalized distance in statistics. Proc Indian Natl Inst Sci. 1936;2:49-55. https://www.scirp.org/reference/referencespapers?referenceid=1001254
  15. 15. Rao CR. Advanced statistical methods in biometrical research. New York: John Wiley & Sons; 1952:357-63.
  16. 16. Doyle JJ. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13-5.
  17. 17. Shrivastava D, Verma P, Bhatia S. Expanding the repertoire of microsatellite markers for polymorphism studies in Indian accessions of mung bean (Vigna radiata L. Wilczek). Mol Biol Rep. 2014;41:5669-80. https://doi.org/10.1007/s11033-014-3436-7
  18. 18. Nalajala S, Singh NB, Jeberson MS, Sastry EV, Yumnam S, Sinha B, et al. Genetic variability, correlation and path analysis in mung bean genotypes (Vigna radiata L. Wilczek): an experimental investigation. Int J Environ Climate Change. 2022;12(11):1846-54. https://doi.org/10.9734/ijecc/2022/v12i1131170
  19. 19. Gadakh SS, Dethe AM, Kathale MN, Kahate NS. Genetic diversity for yield and its component traits in green gram (Vigna radiata (L.) Wilczek). J Crop Weed. 2013;9(1):106-9.
  20. 20. Singh R, van Heusden AW, Yadav RC. A comparative genetic diversity analysis in mung bean (Vigna radiata L.) using inter-simple sequence repeat (ISSR) and amplified fragment length polymorphism (AFLP). Afr J Biotechnol. 2013;12(47):6574-82.
  21. 21. Mwangi JW, Okoth OR, Kariuki MP, Piero NM. Genetic and phenotypic diversity of selected Kenyan mung bean (Vigna radiata L. Wilczek) genotypes. J Genet Eng Biotechnol. 2021;19(1):142. https://doi.org/10.1186/s43141-021-00207-9
  22. 22. Seehalak W, Somta P, Sommanas W, Srinives P. Microsatellite markers for mung bean developed from sequence database. Mol Ecol Resour. 2009;9(3):862-4. https://doi.org/10.1111/j.1755-0998.2009.02655.x
  23. 23. Sanghani JM, Golakiya BA, Dhedhi KK, Patel SV. Molecular characterization of mung bean (Vigna radiata L.) genotypes through RAPD, ISSR and SSR markers. Legume Res. 2015;38(4):452-6. https://doi.org/10.5958/0976-0571.2015.00040.9
  24. 24. Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, et al. Characterization of microsatellites and gene contents from genome shotgun sequences of mung bean (Vigna radiata (L.) Wilczek). BMC Plant Biol. 2009;9:137. https://doi.org/10.1186/1471-2229-9-137
  25. 25. Mir AH, Bhat MA, Fayaz H, Wani AA, Dar SA, Maqbool S, et al. SSR markers in revealing extent of genetic diversity and phylogenetic relationships among chickpea core collection accessions for Western Himalayas. Mol Biol Rep. 2022;49(12):11469-79. https://doi.org/10.1007/s11033-022-07862-x
  26. 26. Saidi A, Sarvmeili J, Pouresmael M. Genetic diversity study in lentil (Lens culinaris Medik.) germplasm: a comparison of CAAT box derived polymorphism (CBDP) and simple sequence repeat (SSR) markers. Biologia. 2022;77(10):2793-803. https://doi.org/10.1007/s11756-022-01089-5
  27. 27. Tripathi S, Singh SK, Srivashtav V, Khaire AR, Vennela P, Singh DK. Molecular diversity analysis in rice (Oryza sativa L.) using SSR markers. Electron J Plant Breed. 2020;11(3):776-82. https://doi.org/10.37992/2020.1103.130
  28. 28. Nachimuthu VV, Muthurajan R, Duraialaguraja S, Sivakami R, Pandian BA, Ponniah G, et al. Analysis of population structure and genetic diversity in rice germplasm using SSR markers: an initiative towards association mapping of agronomic traits in Oryza sativa. Rice. 2015;8:30. https://doi.org/10.1186/s12284-015-0062-5
  29. 29. Mukta S, Bappy MN, Bhuiyan J, Zohora FT, Afrin D. Assessment of genetic diversity in Bangladeshi rice (Oryza sativa L.) varieties utilizing SSR markers. Gene Rep. 2024;37:102051. https://doi.org/10.1016/j.genrep.2024.102051
  30. 30. Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet. 2000;100:584-92. https://doi.org/10.1007/s001220050077
  31. 31. Türkoğlu A, Haliloğlu K, Mohammadi SA, Öztürk A, Bolouri P, Özkan G, et al. Genetic diversity and population structure in Türkiye bread wheat genotypes revealed by simple sequence repeats (SSR) markers. Genes. 2023;14(6):1182. https://doi.org/10.3390/genes14061182
  32. 32. Islam MA, Alam MS, Maniruzzaman M, Haque MS. Microsatellite marker-based genetic diversity assessment among exotic and native maize inbred lines of Bangladesh. Saudi J Biol Sci. 2023;30(8):103715. https://doi.org/10.1016/j.sjbs.2023.103715
  33. 33. Kaur G, Joshi A, Jain D. SSR-marker assisted evaluation of genetic diversity in mung bean (Vigna radiata (L.) Wilczek) genotypes. Braz Arch Biol Technol. 2018;61:e16160613. https://doi.org/10.1590/1678-4324-2016160613
  34. 34. Gokulakrishnan J, Kumar BS, Prakash M. Studies on genetic diversity in mung bean (Vigna radiata L.). Legume Res. 2012;35(1):50-2. https://doi.org/10.5958/j.0976-0571.35.1.012
  35. 35. Khan MH, Dar SA, Hussain J, Dar NA, Mehvish S, Qayoom A, et al. Genetic diversity studies in mung bean (Vigna radiata (L.) Wilczek). Adv Crop Sci Technol. 2023;11(2):1000556. https://doi.org/10.35248/2329-8863.23.11.556

Downloads

Download data is not yet available.