Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Phytochemical analysis and in vitro antileishmanial activity of Basella alba extract cultivated in Iraq

DOI
https://doi.org/10.14719/pst.9238
Submitted
1 May 2025
Published
09-09-2025
Versions

Abstract

Basella alba, widely known as Malabar spinach, is a fast-growing perennial native to tropical regions Worldwide. B. alba has been widely utilized in traditional medicine because of anti-inflammatory properties, laxative, diuretic and antioxidant properties. The current research focuses on determining the chemical composition of B. alba and evaluating its antileishmanial efficacy against the promastigote of Leishmania tropica in vitro. This study is the first to examine the potential of B. alba as a natural remedy for leishmaniasis, as its antileishmanial properties have not been previously investigated. A Soxhlet apparatus was used to obtain whole-plant extracts of B. alba. The MTT proliferation assay was employed to evaluate the in vitro antileishmanial efficacy of L. tropica promastigotes. Reverse phase-high -performance liquid chromatography (RP-HPLC) was utilized to identify and isolate lupeol and β-sitosterol in the petroleum ether fraction. Gas chromatography-mass spectrometry (GC-MS) was employed to perform a comprehensive chemical profile of the fraction. To confirm the isolated compounds' molecular structure and fragmentation patterns, structural characterization was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). To determine whether characteristic groups were found, Fourier-transform infrared spectroscopy (FTIR) was employed. The petroleum ether extract demonstrated dose-dependent anti-promastigote activity with a notable inhibition rate of 72 %, indicating its potential antileishmanial activity. The presence of bioactive components with established antileishmanial properties highlights the potential of B. alba as a natural antileishmanial agent. Further in vivo studies are needed to support these in vitro findings and confirm their therapeutic potential.

References

  1. 1. Gramiccia M, Gradoni L. The current status of zoonotic leishmaniases and approaches to disease control. Int J Parasitol. 2005;35(11-12):1169–80. https://doi.org/10.1016/j.ijpara.2005.07.001
  2. 2. Aliaga L, Cobo F, Mediavilla JD, Bravo J, Osuna A, Amador JM, et al. Localized mucosal leishmaniasis due to Leishmania (Leishmania) infantum: Clinical and microbiologic findings in 31 patients. Medicine. 2003;82(3):147–58. https://doi.org/10.1097/01.md.0000076009.64510.b8
  3. 3. Jewely HM, Zuhair T. Evaluation of antileishmanial activity of Osteospermum ecklonis extract of aerial parts against Leishmania donovani: In vitro. Iraqi J Pharm Sci. 2022;31(Suppl):45–53. https://doi.org/10.31351/vol31issSuppl.pp45-53
  4. 4. Bravo JA, Sauvain M, Gimenez TA, Balanza E, Serani L, Laprevote O, et al. Trypanocidal withanolides and withanolide glycosides from Dunalia brachyacantha. J Nat Prod. 2001;64(6):720–25. https://doi.org/10.1021/np000527p
  5. 5. Roy SK, Gangopadhyay G, Mukherjee KK. Is stem twining form of Basella alba L. a naturally occurring variant? Curr Sci. 2010;99(10):1370–75.
  6. 6. Moutusi S, Parivallal PB, Prasannakumar MK, Kiranmayee P. Morphological and molecular characterization of culturable leaf endophytic fungi from Malabar spinach: The first report. Stud Fungi. 2019;4(1):192–204. http://dx.doi.org/10.5943/sif/4/1/2
  7. 7. Abu-Irmaileh B, Al-Hroub HM, Rasras MH, Hudaib M, Semreen MH, Bustanji Y. Phytochemical composition and antiviral properties of Achillea fragrantissima methanolic extract on H1N1 virus. Pharmacia. 2025;72:1–9. https://doi.org/10.3897/pharmacia.72.e138108
  8. 8. Satar Al Baaj A, Abdul-Jalil TZ. Phytochemical screening of petroleum ether fractions by GC/MS and isolation of lupeol from two different parts of Iraqi Leucaena leucocephala. Iraqi J Pharm Sci. 2022;31(Suppl):62–74. https://doi.org/10.31351/vol31issSuppl.pp62-74
  9. 9. Nandhini S, Ilango K. Simultaneous quantification of lupeol, stigmasterol and β-sitosterol in extracts of Adhatoda vasica Nees. leaves and its marketed formulations by a validated RP-HPLC method. Pharmacogn J. 2020;12(4):850-56.
  10. 10. Ali AH. High-performance liquid chromatography (HPLC): A review. Ann Adv Chem. 2022;6(1):10–20. http://dx.doi.org/10.22270/ajprd.v13i1.1509
  11. 11. Ibrahem NM, Khadum EJ, Mutlag SH. Isolation of catechin and epigallocatechin from Iraqi Rhus coriaria by preparative high-performance liquid chromatography (PHPLC). Iraqi J Pharm Sci. 2022;31(2):271–82. https://doi.org/10.31351/vol31iss2pp271-282
  12. 12. Ezghayer MA, Ahmed OH, Tawfeeq MF. UPLC-ESI-MS/MS phytochemicals profiling of n-butanol, chloroform, and hexane fraction of Xanthium strumarium fruit extract. Biomed Pharmacol J. 2024;17(2):1035–1043.
  13. https://dx.doi.org/10.13005/bpj/2920
  14. 13. Selvaraju R, Sakuntala P, Jaleeli KA. GC–MS and FTIR analysis of chemical compounds in Ocimum gratissimum plant. Biophysics. 2021;66(3):401–408. https://doi.org/10.1134/S0006350921030167
  15. 14. Al-Ogaili N. Synergistic effect of Lawsonia inermis and Peganum harmala aqueous extracts on in vitro growth of Leishmania tropica promastigotes compared to sodium stibogluconate. Al-Qadisiyah Med J. 2016;12(22):76–83.
  16. 15. Sereno D, Lemesre JL. Axenically cultured amastigote forms as an in vitro model for investigation of antileishmanial agents. Antimicrob Agents Chemother. 1997;41(5):972–76. https://journals.asm.org/doi/pdf/10.1128/aac.41.5.972
  17. 16. Rasool MS, Abdul-Jaleel TZ. Antileishmanial evaluation and phytochemical screening of Iraqi Sanchezia speciosa petroleum ether fraction in vitro. Iraqi J Pharm Sci. 2025;34(1):266–74. https://doi.org/10.31351/vol34iss1pp266-274
  18. 17. Wahyuni HS, Nugraha SE, Sumantri IB, Jap CC, Hijriyan TB. Unveiling the anticancer potential of the ethanolic extract from Pometia pinnata: Molecular dynamics targeting CHK1 and cytotoxicity study on MCF-7 cells. Pharmacia. 2024;71:1–15. https://doi.org/10.3897/pharmacia.71.e138556
  19. 18. Abdul-lalil TZ. Ultrasound-assisted extraction of fennel leaves: Process optimization, thin layer chromatography, and cytotoxic activity of ethanolic extract. Iraqi J Pharm Sci. 2024;33(1):94-103. https://doi.org/10.31351/vol33iss1pp94-103
  20. 19. Mus’hib HK, Abdul-jalil TZ. Lupeol: Triterpene from Iraqi Portulaca grandiflora L. (Portulacaceae): Its extraction, identification (GC/MS), isolation (Combiflash), and structure elucidation. Iraqi J Pharm Sci. 2024;33(4SI):147-58. https://doi.org/10.31351/vol33iss(4SI)pp147-158
  21. 20. de Carvalho TC, Polizeli AM, Turatti IC, Severiano ME, de Carvalho CE, Ambrósio SR, et al. Screening of filamentous fungi to identify biocatalysts for lupeol biotransformation. Molecules. 2010;15(9):6140-51. https://doi.org/10.3390/molecules15096140
  22. 21. Kosyakov DS, Ul’Yanovskii NV, Falev DI. Determination of triterpenoids from birch bark by liquid chromatography-tandem mass spectrometry. J Anal Chem. 2014;69:1264-69. http://dx.doi.org/10.1134/S1061934814130061
  23. 22. Abdullah Hussein Kshash, Omar Jamal Mahdi Al-Asafi, Hanaa Kaen Salih. Synthesis, characterization, and investigation of mesomorphic properties of a new 2,5-bis-(4-alkanoyloxybenzylidene) cyclopentan-1-one. Acta Chim Slov. 2022;69:519-25. https://doi.org/10.17344/acsi.2022.7360
  24. 23. Ezghayer MA, Kadhim EJ. UPLC-ESI-MS/MS and various chromatographic techniques for identification of phytochemicals in Populus euphratica Oliv. leaves extract. Iraqi J Pharm Sci. 2020;29(1):94-114. https://doi.org/10.31351/vol29iss1pp94-114
  25. 24. McMurry J. Organic chemistry. Cengage Learning; 2016.
  26. 25. Azeez RA, Abaas IS, Kadhim EJ. Isolation and characterization of β-sitosterol from Elaeagnus angustifolia cultivated in Iraq. Asian J Pharm Clin Res. 2018;11(11):442-46. https://doi.org/10.22159/ajpcr.2018.v11i11.29030
  27. 26. Emaikwu V, Ndukwe IG, Mohammed R, Iyun ORA, Anyam JV. Isolation and characterization of lupeol from the stem of Tapinanthus globiferus (A Rich.) and its antimicrobial assay. J Appl Sci Environ Manage. 2020;24(6):1015-20. https://doi.org/10.4314/jasem.v24i6.1133
  28. 27. Silva AAS, Morais SM, Falcão MJC, Vieira IGP, Ribeiro LM, Viana SM, Andrade-Junior HF. Activity of cycloartane-type triterpenes and sterols isolated from Musa paradisiaca fruit peel against Leishmania infantum chagasi. Phytomedicine. 2014;21(11):1419-23. https://doi.org/10.1016/j.phymed.2014.05.005
  29. 28. Kariyawasam UL, Selvapandiyan A, Rai K, Wani TH, Ahuja K, Beg MA, Karunaweera ND. Genetic diversity of Leishmania donovani that causes cutaneous leishmaniasis in Sri Lanka: A cross-sectional study with regional comparisons. BMC Infect Dis. 2017;17:791. https://doi.org/10.1186/s12879-017-2883-x
  30. 29. Alcantara LM, Ferreira TC, Fontana V, Chatelain E, Moraes CB, Freitas-Junior LH. A multi-species phenotypic screening assay for leishmaniasis drug discovery shows that active compounds display a high degree of species-specificity. Molecules. 2020;25(11):2551. https://doi.org/10.3390/molecules25112551
  31. 30. Raimundo VD, Carvalho RPR, Machado-Neves M, de Almeida Marques-da-Silva E. Effects of terpenes in the treatment of visceral leishmaniasis: A systematic review of preclinical evidence. Pharmacol Res. 2022;177:106117. https://doi.org/10.1016/j.phrs.2022.106117
  32. 31. Singh AP, Zhang Y, No JH, Docampo R, Nussenzweig V, Oldfield E. Lipophilic bisphosphonates are potent inhibitors of Plasmodium liver-stage growth. Antimicrob Agents Chemother. 2010;54(7):2987-93. https://doi.org/10.1128/aac.00198-10
  33. 32. Afedh AA. In vivo comparative study of the efficacy of β-sitosterol, ketoconazole 2 % and mupirocin for the treatment of cutaneous leishmaniosis. Ann Parasitol. 2022;68(2):233-39. https://doi.org/10.17420/ap6802.4313
  34. 33. Galli F, Bonomini M, Bartolini D, Zatini L, Reboldi G, Marcantonini G, et al. Vitamin E (alpha-tocopherol) metabolism and nutrition in chronic kidney disease. Antioxidants. 2022;11(5):989. https://doi.org/10.3390/antiox11050989
  35. 34. Cheng L, Ji T, Zhang M, Fang B. Recent advances in squalene: Biological activities, sources, extraction, and delivery systems. Trends Food Sci Technol. 2024;104392. http://dx.doi.org/10.22161/ijeab/2.4.26
  36. 35. Jie F, Yang X, Yang B, Liu Y, Wu L, Lu B. Stigmasterol attenuates inflammatory response of microglia via NF-κB and NLRP3 signaling by AMPK activation. Biomed Pharmacother. 2022;153:113317. https://doi.org/10.1016/j.biopha.2022.113317
  37. 36. Kumoro AC, Hartati I. Microwave assisted extraction of dioscorin from Gadung (Dioscorea hispida Dennst) tuber flour. Procedia Chem. 2015;14:47–55. https://doi.org/10.1016/j.proche.2015.03.009
  38. 37. He S, Wang X, Chen J, Li X, Gu W, Zhang F, et al. Optimization of ultrasonic-assisted extraction of steroidal saponins from Polygonatum kingianum. Molecules. 2022;27(5):1463. https://doi.org/10.3390/molecules27051463
  39. 38. Albrecht W. Which concentrations are optimal for in vitro testing? EXCLI Journal. 2020;19:1172. http://dx.doi.org/10.17179/excli2020-2761
  40. 39. Saab AM, Lampronti I, Finotti A, Borgatti M, Gambari R, Esseily F, et al. In vitro evaluation of the biological activity of lebanese medicinal plants extracts against herpes simplex virus type 1. Minerva Biotecnol. 2012;24(3):117–21.

Downloads

Download data is not yet available.