Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Optimization of ultrasonic-assisted extraction and in vitro determination of the cytotoxic effect of ethyl acetate fraction of wild Amaranthus viridis on SKGT-4, AGS and A431 cell lines

DOI
https://doi.org/10.14719/pst.9326
Submitted
7 May 2025
Published
27-10-2025
Versions

Abstract

Amaranthus viridis L. belongs to the Amaranthaceae family. It is a rich source of numerous phytochemicals and amino acids. The objective of this work was to optimize Ultrasound-Assisted Extraction (UAE) based on the extraction yield and Thin-Layer Chromatography (TLC) profile under different conditions, to compare the optimized UAE to the Soxhlet extraction method and evaluate the cytotoxic effects of the ethyl acetate fraction of the 80 % ethanolic extract on the SKGT-4 (human esophageal adenocarcinoma), AGS (human gastric adenocarcinoma) and A431 (human epidermoid carcinoma). A one-factor at a time experiment was carefully designed to assess the influence of the following factors on the extraction: time, frequency, solid-to-solvent ratio and aqueous ethanol concentration. Soxhlet extraction using 80 % aqueous ethanol was done for defatted plant material, then fractionation using chloroform, ethyl acetate and n-butanol. Cytotoxicity of ethyl acetate fraction was evaluated using the MTT assay on AGS, A431 and SKGT-4 cell lines. The results indicated that in the UAE, the solid-to-solvent ratio has the most significant effect on yield. Soxhlet extraction proved to be more efficient than UAE in terms of TLC profiles. The cytotoxicity of the ethyl acetate fraction exhibited cytotoxic activity against the tested cell lines in a concentration-dependent manner. Thus, selecting a particular extraction method depends on the target compounds. Soxhlet is preferred for gaining certain compounds that require heat for their extraction. The ethyl acetate fraction showed a cytotoxic effect on various cell lines related to cell components and their interactions with phytochemicals present in this fraction.  

References

  1. 1. Jaafar NS, Hassan AF, Hamad MN. Evaluation of the genotoxicity of the aerial parts of Iraqi Euphorbia cyathophora on bone marrow and spleen cells in mice. Iraqi J Pharm Sci. 2023;32(2):41-5. https://doi.org/10.31351/vol32iss2pp41-45
  2. 2. Salmerón-Manzano E, Garrido-Cardenas JA, Manzano-Agugliaro F. Worldwide research trends on medicinal plants. Int J Environ Res Public Health. 2020;17(10):3376. https://doi.org/10.3390/ijerph17103376
  3. 3. Kumar BSA, Lakshman K, Jayaveera KKN, Shekar DS, Muragan CSV, Manoj B. Antinociceptive and antipyretic activities of Amaranthus viridis Linn in different experimental models. Avicenna J Med Biotech. 2009;1(3):167-71.
  4. 4. Haider A. Pharmaceutical activity of medicinal plant Amaranthus viridis Linn due to its chemical constituents: a review. Bioeduscience. 2023;7(2):143-8. https://doi.org/10.22236/jbes/12089
  5. 5. Jha AK, Sit N. Extraction of bioactive compounds from plant materials using a combination of various novel methods: a review. Trends Food Sci Technol. 2022;119:579-91. https://doi.org/10.1016/j.tifs.2021.11.019
  6. 6. Bitwell C, Indra SS, Luke C, Kakoma MK. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci Afr. 2023;19:e01585. https://doi.org/10.1016/j.sciaf.2023.e01585
  7. 7. Usman I, Hussain M, Imran A, Afzaal M, Saeed F, Javed M, et al. Traditional and innovative approaches for the extraction of bioactive compounds. Int J Food Prop. 2022;25(1):1215-33. https://doi.org/10.1080/10942912.2022.2074030
  8. 8. Kirtane SR. Conventional extraction methods versus novel extraction methods of bioactive compounds from some medicinal plants. Int J Green Pharm. 2022;16(3). https://doi.org/10.22377/ijgp.v16i3.3297
  9. 9. Cook CM. Essential oils: isolation, production and uses. In: Caballero B, Finglas P, Toldrá F, editors. Encyclopedia of food and health. Vol. 1. Oxford: Academic Press; 2016. https://doi.org/10.1016/B978-0-12-384947-2.00261-0
  10. 10. Ijaz S, Akhtar N, Khan MS, Hameed A, Irfan M, Arshad MA, et al. Plant derived anticancer agents: a green approach towards skin cancers. Biomed Pharmacol Ther. 2018;103:1643-51. https://doi.org/10.1016/j.biopha.2018.04.113
  11. 11. Guo W, Cao P, Wang X, Hu M, Feng Y. Medicinal plants for the treatment of gastrointestinal cancers from the metabolomics perspective. Front Pharmacol. 2022;13:909755. https://doi.org/10.3389/fphar.2022.909755
  12. 12. An J, An S, Choi M, Jung JH, Kim B. Natural products for esophageal cancer therapy: from traditional medicine to modern drug discovery. Int J Mol Sci. 2022;23(21):13558. https://doi.org/10.3390/ijms232113558
  13. 13. Zuhair Abdul-lalil T. Ultrasound-assisted extraction of fennel leaves: process optimization, thin layer chromatography and cytotoxic activity of ethanolic extract. Iraqi J Pharm Sci. 2024;33(1):94-103. https://doi.org/10.31351/vol33iss1pp94-103
  14. 14. Alshammaa DA, Jaafar NS. Preliminary tests, phytochemical investigation (GC/MS, HPLC) and cytotoxic activity of Pyrus calleryana fruits cultivated in Iraq. Iraqi J Pharm Sci. 2025;34(1):59-71. https://doi.org/10.31351/vol34iss1pp59-71
  15. 15. Abd AM, Kadhim EJ. Phytochemical investigation of aerial parts of Iraqi Cardaria draba. Iraqi J Pharm Sci. 2020;29(2):27-36. https://doi.org/10.31351/vol29iss2pp27-36
  16. 16. Contino G, Eldridge MD, Secrier M, Bower L, Fels Elliott R, Weaver J, et al. Whole-genome sequencing of nine esophageal adenocarcinoma cell lines. F1000Res. 2016;5:1336. https://doi.org/10.12688/f1000research.7033.1
  17. 17. Barati T, Haddadi M, Sadeghi F, Muhammadnejad S, Muhammadnejad A, Heidarian R, et al. AGS cell line xenograft tumor as a suitable gastric adenocarcinoma model: growth kinetic characterization and immunohistochemistry analysis. Iran J Basic Med Sci. 2018;21(7):678. https://doi.org/10.22038/IJBMS.2018.22938.5835
  18. 18. Kalailingam P, Tan HB, Pan JY, Tan SH, Thanabalu T. Overexpression of CDC42SE1 in A431 cells reduced cell proliferation by inhibiting the Akt pathway. Cells. 2019;8(2):117. https://doi.org/10.3390/cells8020117
  19. 19. Salman MI, Emran MA, Al-Shammari AM. Spheroid-formation 3D engineering model assay for in vitro assessment and expansion of cancer cells. In: Conference Proceedings of the AIP Conference; 2021 Nov 15; Iraq. New York: AIP Publishing; 2021. https://doi.org/10.1063/5.0065362
  20. 20. Freshney RI. Culture of animal cells: a manual of basic technique and specialized applications. Hoboken (NJ): John Wiley & Sons; 2015.
  21. 21. Jaafar NS, Alshammaa DA, Zuhair Abdul-lalil T, Ibrahem NM. Quantitative determination and cytotoxic effect of oleanolic acid from Olea europaea leaves extract cultivated in Iraq. Iraqi J Pharm Sci. 2022;31(2):244-50. https://doi.org/10.31351/vol31iss2pp244-250
  22. 22. Haider A, Ikram M, Fatima U, Javed A. Pharmaceutical activity of medicinal plant Amaranthus viridis Linn due to its chemical constituents: a review. Bioeduscience. 2023;7(2):143-8. https://doi.org/10.22236/jbes/12089
  23. 23. Sun Y, Liu D, Chen J, Ye X, Yu D. Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrason Sonochem. 2011;18(1):243-9. https://doi.org/10.1016/j.ultsonch.2010.05.014
  24. 24. Wang Q, Chen JJ, Qiu B, Zhou L, Liu RY, Huang JF, et al. Optimization of ultrasound-assisted deep eutectic solvents extraction of rutin from Ilex asprella using response surface methodology. Sci Rep. 2025;15(1):6205. https://doi.org/10.1038/s41598-025-90536-9
  25. 25. Maran JP, Manikandan S, Nivetha CV, Dinesh R. Ultrasound-assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face-centered response surface design. Arab J Chem. 2017;10:S1145-57. https://doi.org/10.1016/j.arabjc.2013.02.007
  26. 26. Venson R, Korb AS, Cooper G. A review of the application of hollow-fiber liquid-phase microextraction in bioanalytical methods - a systematic approach with focus on forensic toxicology. J Chromatogr B. 2019;1108:32-53. https://doi.org/10.1016/j.jchromb.2019.01.006
  27. 27. Borrás-Enríquez AJ, Reyes-Ventura E, Villanueva-Rodríguez SJ, Moreno-Vilet L. Effect of ultrasound-assisted extraction parameters on total polyphenols and its antioxidant activity from mango residues (Mangifera indica L. var. Manililla). Separations. 2021;8(7):94. https://doi.org/10.3390/separations8070094
  28. 28. Suhaimi SH, Hasham R, Hafiz Idris MK, Ismail HF, Mohd Ariffin NH, Abdul Majid FA. Optimization of ultrasound-assisted extraction conditions followed by solid phase extraction fractionation from Orthosiphon stamineus Benth (Lamiace) leaves for antiproliferative effect on prostate cancer cells. Molecules. 2019;24(22):4183. https://doi.org/10.3390/molecules24224183
  29. 29. Medina-Torres N, Ayora-Talavera T, Espinosa-Andrews H, Sánchez-Contreras A, Pacheco N. Ultrasound-assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy. 2017;7(3):47. https://doi.org/10.3390/agronomy7030047
  30. 30. Shen L, Pang S, Zhong M, Sun Y, Qayum A, Liu Y, et al. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: principles, advantages, equipment and combined technologies. Ultrason Sonochem. 2023:106646. https://doi.org/10.1016/j.ultsonch.2023.106646
  31. 31. Liao J, Xue H, Li J, Peng L. Effects of ultrasound frequency and process variables of modified ultrasound-assisted extraction on the extraction of anthocyanin from strawberry fruit. Food Sci Technol. 2022;42:e20922. https://doi.org/10.1590/fst.20922
  32. 32. Mokaizh AAB, Nour AH, Kerboua K. Ultrasonic-assisted extraction to enhance the recovery of bioactive phenolic compounds from Commiphora gileadensis leaves. Ultrason Sonochem. 2024;105:106852. https://doi.org/10.1016/j.ultsonch.2024.106852
  33. 33. Muhamad N, Muhmed SA, Yusoff MM, Gimbun J. Influence of solvent polarity and conditions on extraction of antioxidant, flavonoids and phenolic content from Averrhoa bilimbi. J Food Sci Eng. 2014;4(2012):255-60. https://doi.org/10.17265/2159-5828/2014.05.006
  34. 34. Li F, Mao YD, Wang YF, Raza A, Qiu LP, Xu XQ. Optimization of ultrasonic-assisted enzymatic extraction conditions for improving total phenolic content, antioxidant and antitumor activities in vitro from Trapa quadrispinosa Roxb. residues. Molecules. 2017;22(3):396. https://doi.org/10.3390/molecules22030396
  35. 35. Rasul MG. Conventional extraction methods use in medicinal plants, their advantages and disadvantages. Int J Basic Sci Appl Comput. 2018;2:10-4.
  36. 36. Suomi J, Sirén H, Hartonen K, Riekkola ML. Extraction of iridoid glycosides and their determination by micellar electrokinetic capillary chromatography. J Chromatogr A. 2000;868(1):73-83. https://doi.org/10.1016/S0021-9673(99)01170-X
  37. 37. Kumar S, Yadav A, Yadav M, Yadav JP, Budhwar L, Yadav A, et al. Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L) Burm f. BMC Res Notes. 2017;10:1-12. https://doi.org/10.1186/s13104-017-2385-3
  38. 38. Widyawati PS, Budianta TDW, Kusuma FA, Wijaya EL. Difference of solvent polarity to phytochemical content and antioxidant activity of Pluchea indica less leaves extracts. Int J Pharmacogn Phytochem Res. 2014;6(4):850-55.
  39. 39. McGaw LJ, Elgorashi EE, Eloff JN. Cytotoxicity of African medicinal plants against normal animal and human cells. In: Toxicological survey of African medicinal plants. Elsevier; 2014. p. 181-233 https://doi.org/10.1016/B978-0-12-800018-2.00008-X
  40. 40. Aljabery RN, Auda MA, Al-Rekabi HY. Apoptotic effects of phenolic extract from Spirulina platensis on esophagus cancer cell line SK-GT-4. 2023;1(3):92-5. J Adv Med Biomed Res. https://doi.org/10.30699/jambs.31.148.499
  41. 41. Tong J, Lifang L, Dong Z, Xu Z. Anticancer effects of hesperidin on gastric cancer cell lines and fibroblast cell lines by reducing the activation of PI3K pathway. Biomed Res Bull. 2023;1(3):92-5. https://doi.org/10.34172/biomedrb.2023.18
  42. 42. Hasnat H, Shompa SA, Islam MM, Alam S, Richi FT, Emon NU, et al. Flavonoids: a treasure house of prospective pharmacological potentials. Heliyon 2024;10(6):e27533. https://doi.org/10.1016/j.heliyon.2024.e27533
  43. 43. Liu M, Huang Q, Li L, Li X, Zhang Z, Dong JT. The cardiac glycoside deslanoside exerts anticancer activity in prostate cancer cells by modulating multiple signaling pathways. Cancers. 2021;13(22):5809. https://doi.org/10.3390/cancers13225809
  44. 44. Reddy D, Kumavath R, Barh D, Azevedo V, Ghosh P. Anticancer and antiviral properties of cardiac glycosides: a review to explore the mechanism of actions. Molecules. 2020;25(16):3596. https://doi.org/10.3390/molecules25163596
  45. 45. Fatima K, Wani ZA, Meena A, Luqman S. Geraniol exerts its antiproliferative action by modulating molecular targets in lung and skin carcinoma cells. Phytother Res. 2021;35(7):3861-74. https://doi.org/10.1002/ptr.7094
  46. 46. Mahmood MA, Abd AH, Kadhim EJ. Assessing the cytotoxicity of phenolic and terpene fractions extracted from Iraqi Prunus arabica on AMJ13 and SK-GT-4 human cancer cell lines. F1000Res. 2023;12:433. https://doi.org/10.12688/f1000research.131336.3
  47. 47. Shamloo S, Jafari Marandi S, Tajadod G, Majd A, Rahimi R. Cytotoxic effect of hydroalcoholic extract of Cota tinctoria (L.) J Gay on AGS and Hep-G2 cancer cell lines. Bol Latinoam Carib Plantas Medic Aromat. 2022;21(1):108-22. https://doi.org/10.37360/blacpma.22.21.1.07
  48. 48. Anantharaju PG, Gowda PC, et al. An overview on the role of dietary phenolics for the treatment of cancers. Nutr J. 2016;15:99. https://doi.org/10.1186/s12937-016-0217-2

Downloads

Download data is not yet available.