Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Conservation agriculture for sustainable crop production: A comprehensive review of soil health, climate resilience and productivity

DOI
https://doi.org/10.14719/pst.9350
Submitted
7 May 2025
Published
26-08-2025 — Updated on 23-09-2025
Versions

Abstract

Conservation Agriculture (CA) is a sustainable farming approach that focuses on reducing soil disturbance, retaining crop residues and promoting crop diversity to enhance productivity and environmental health. This review examines the diverse benefits of CA, emphasizing its role in enhancing nutrient use efficiency through improved soil nutrient retention, increased soil organic carbon and stimulating microbial activity. Additionally, CA contributes to climate resilience by lowering greenhouse gas emissions and thereby enhancing carbon sequestration. It also improves soil structure and water retention, while mitigating issues such as sodicity, thereby enhancing both the physical and chemical properties of soil. CA practices increasing energy efficiency, reducing production costs and improving farmers' economic returns. Furthermore, CA helps manage pests, diseases and nematodes by promoting healthier soil ecosystems. However, its adoption faces challenges, including technical difficulties, limited access to appropriate machinery and socio-economic barriers. This review emphasizes the transformative potential of CA in creating sustainable agricultural systems. It also highlights the need to address existing barriers to fully harness its benefits for ensuring food security and combating climate change.

References

  1. 1. Sharma AR. Conservation agriculture in India: history, progress and way forward. Indian J Agron. 2021;66(1):1-8. https://doi.org/10.59797/ija.v66i1.2824
  2. 2. FAO. Conservation agriculture; 2016.
  3. 3. Modak K, Biswas DR, Ghosh A, Pramanik P, Das TK, Das S, et al. Zero tillage and residue retention impact on soil aggregation and carbon stabilization within aggregates in subtropical India. Soil Tillage Res. 2020;202:104649. https://doi.org/10.1016/j.still.2020.104649
  4. 4. FAO. Conservation agriculture principles; 2024.
  5. 5. FAO. Conservation agriculture: food security in Lesotho for a changing climate; 2022.
  6. 6. Wuaden CR, Nicoloso RS, Barros EC, Grave RA. Early adoption of no-till mitigates soil organic carbon and nitrogen losses due to land use change. Soil Tillage Res. 2020;204:104728. https://doi.org/10.1016/j.still.2020.104728
  7. 7. Ghosh PK, Das A, Saha R, Kharkrang E, Tripathi AK, Munda GC, et al. Conservation agriculture towards achieving food security in North East India. Curr Sci. 2010:915-21.
  8. 8. Thierfelder C, Amézquita E, Stahr K. Effects of intensifying organic manuring and tillage practices on penetration resistance and infiltration rate. Soil Tillage Res. 2005;82(2):211-26. https://doi.org/10.1016/j.still.2004.07.018
  9. 9. Kassam A, Friedrich T. Nutrient management in conservation agriculture: a biologically-based approach to sustainable production intensification. In: Proceedings of the 7th Conservation Agriculture Conference; 2009.
  10. 10. Basch G, González Sánchez EJ, Kassam A, Román Vázquez J, Moreno Blanco E, Streit B, et al. Proceedings of the 8th World Congress on Conservation Agriculture; 2021 Jun 21-23; Bern, Switzerland. Brussels: European Conservation Agriculture Federation; 2022.
  11. 11. Kassam A, Friedrich T, Derpsch R. Successful experiences and learnings from Conservation Agriculture worldwide. In: Book of Extended Abstracts of the 8th World Congress on Conservation Agriculture; 2021; Bern, Switzerland. Bern: European Conservation Agriculture Federation; 2021. p. 39
  12. 12. Kassam A, Friedrich T, Derpsch R. Successful experiences and lessons from conservation agriculture worldwide. Agronomy. 2022;12(4):769. https://doi.org/10.3390/agronomy12040769
  13. 13. Hoque MA, Miah MS. Evaluation of different tillage methods to assess BARI inclined plate planter. Agric Eng Int CIGR J. 2015;17(3).
  14. 14. Mottalib MA, Hossain MA, Hoque MA, Rahman MA, Khan AU, Mohammod N, et al. Assessment of techno-economic feasibility of conservation agriculture planter for planting of soybean in south coastal region of Bangladesh. World J Adv Res Rev. 2024;21(3):203-18. https://doi.org/10.30574/wjarr.2024.21.3.0599
  15. 15. Hossain I, Esdaile RJ, Bell R, Haque E, Johansen C. Development of a low cost two wheel tractor operated no-till seeder for better establishment of upland crop. Eco-friendly Agric J. 2009;2:915-9.
  16. 16. Hossain MA, Mottalib MA, Hossain MI, Amin MN, Alam MM, Saha CK. Appropriate conservation machinery for mungbean cultivation in the southern region of Bangladesh. Precis Agric. 2018;1(1):1-9. https://doi.org/10.14302/issn.2998-1506.jpa-18-1972
  17. 17. Li C, Tang Y, McHugh AD, Wu X, Liu M, Li M, et al. Development and performance evaluation of a wet-resistant strip-till seeder for sowing wheat following rice. Biosyst Eng. 2022;220:146-58. https://doi.org/10.1016/j.biosystemseng.2022.05.019
  18. 18. Liu M, Wu X, Li M, Xiong T, Li C, Tang Y. Innovative no-till seeding technology improves yield and nitrogen use efficiency while reducing environmental pressure in wheat after rice harvesting. Soil Tillage Res. 2024;235:105908. https://doi.org/10.1016/j.still.2023.105908
  19. 19. NRCS U. NRCS cover crop termination guidelines. USDA Natural Resources Conservation Service; 2014.
  20. 20. Trevini M, Tosti G, Benincasa P. Agronomic performance of disc chain harrow as a conservation agriculture tool for a one-step cover crop termination and seedbed preparation. Exp Agric. 2024;60:e12. https://doi.org/10.1017/S001447972400005X
  21. 21. Kumar V, Naresh RK, Kumar S, Kumar S, Kumar A, Gupta RK, et al. Efficient nutrient management practices for sustaining soil health and improving rice-wheat productivity: a review. J Pharmacogn Phytochem. 2018;7(1):585-97.
  22. 22. Dutta SK, Njoroge S, Tangi A, Moulay H, Zingore S, El Gharous M, et al. Nutrient management in conservation agriculture-a special focus on smallholder farmers of South Asia and Sub-Saharan Africa. SATSA Mukhapatra-Annu Tech Issue. 2020(24):46-68.
  23. 23. Gruhn P, Goletti F, Yudelman M. Integrated nutrient management, soil fertility and sustainable agriculture: current issues and future challenges. Intl Food Policy Res Inst; 2000.
  24. 24. Kumar S, Singh VK, Shekhawat K, Kumarupadhyay PR, Dwivedi BS, Singhrathore SA, et al. Enhancing productivity, economics and energy efficiency through precision nitrogen and water management in conservation agriculture-based maize (Zea mays) in the Indo-Gangetic Plains. Indian J Agric Sci; 2024. https://doi.org/10.56093/ijas.v94i3.145735
  25. 25. Sadhukhan R, Kumar D, Sen S, Sepat S, Ghosh A, Shivay YS, et al. Precision nutrient management in zero-till direct-seeded rice influences the productivity, profitability, nutrient and water use efficiency as well as the environmental footprint in the Indo Gangetic Plain of India. Agriculture. 2023;13(4):784. https://doi.org/10.3390/agriculture13040784
  26. 26. Kesarwani A, Kumar S. Nutrient expert as decision supporting tool to reduce nitrate toxicity in cereal crops. Adv Mater Proc. 2022;7(1):1-5. https://doi.org/10.5185/amp.2022.010426
  27. 27. Shah J, Wang X, Khan SU, Khan S, Gurmani ZA, Fiaz S, et al. Optical-sensor-based nitrogen management in oat for yield enhancement. Sustainability. 2021;13(12):6955. https://doi.org/10.3390/su13126955
  28. 28. Rasool S, Amin K, Sadiq M. Development of colour sensor based low-cost hand-held device for crop nitrogen management. SKUAST J Res. 2022;24(2):215-20. https://doi.org/10.5958/2349-297x.2022.00045.9
  29. 29. Jat HS, Jat RK, Singh Y, Parihar CM, Jat SL, Tetarwal JP, et al. Nitrogen management under conservation agriculture in cereal-based systems. Indian J Fert. 2016;12(4):76-91.
  30. 30. Pramanick B, Kumar M, Naik BM, Kumar M, Singh SK, Maitra S, et al. Long-term conservation tillage and precision nutrient management in maize-wheat cropping system: effect on soil properties, crop production and economics. Agronomy. 2022;12(11):2766. https://doi.org/10.3390/agronomy12112766
  31. 31. Jat RK, Bijarniya D, Kakraliya SK, Sapkota TB, Kakraliya M, Jat ML, et al. Precision nutrient rates and placement in conservation maize-wheat system: effects on crop productivity, profitability, nutrient-use efficiency and environmental footprints. Agronomy. 2021;11(11):2320. https://doi.org/10.3390/agronomy11112320
  32. 32. Gracia-Romero A, Kefauver SC, Vergara-Díaz O, Hamadziripi E, Zaman-Allah MA, Thierfelder C, et al. Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize (Zea mays) in Zimbabwe. Sci Rep. 2020;10(1):16008. https://doi.org/10.1038/s41598-020-73110-3
  33. 33. Bolo P, Mucheru-Muna M, Kinyua M, Ayaga G, Nyawira S, Kihara J. Nitrogen and phosphorus mineralization and their corresponding monetary values under long-term integrated soil fertility management practices. J Sustain Agric Environ. 2024;3(2):e12100. https://doi.org/10.1002/sae2.12100
  34. 34. Vitali A, Moretti B, Lerda C, Said-Pullicino D, Celi L, Romani M, et al. Conservation tillage in temperate rice cropping systems: crop production and soil fertility. Field Crops Res. 2024;308:109276. https://doi.org/10.1016/j.fcr.2024.109276
  35. 35. Jahangir MM, Islam S, Nitu TT, Uddin S, Kabir AK, Meah MB, et al. Bio-compost-based integrated soil fertility management improves post-harvest soil structural and elemental quality in a two-year conservation agriculture practice. Agronomy. 2021;11(11):2101. https://doi.org/10.3390/agronomy11112101
  36. 36. Adams AM, Gillespie AW, Dhillon GS, Kar G, Minielly C, Koala S, et al. Long-term effects of integrated soil fertility management practices on soil chemical properties in the Sahel. Geoderma. 2020;366:114207. https://doi.org/10.1016/j.geoderma.2020.114207
  37. 37. Otieno EO, Ngetich FK, Kiboi MN, Muriuki A, Adamtey NN. Tillage system and integrated soil fertility inputs improve smallholder farmers’ soil fertility and maize productivity in the Central Highlands of Kenya. J Agric Rural Dev Trop Subtrop. 2021;122(2):159-71. https://doi.org/10.17170/kobra-202107134319
  38. 38. Cordeau S. Conservation agriculture and agroecological weed management. Agronomy. 2022;12(4):867. https://doi.org/10.3390/agronomy12040867
  39. 39. Bernier Brillon J, Lucotte M, Bernier A, Fontaine M, Moingt M. Using cover crops as means of controlling weeds and reducing the applied quantity of glyphosate-based herbicide in no-till glyphosate tolerant soybean and corn. Agriculture. 2024;14(5):659. https://doi.org/10.3390/agriculture14050659
  40. 40. Chinyo M, Singh R, Gond S. Effect of weed management practices on growth dynamics and productivity of rainfed pearl millet under conservation agriculture. Environ Conserv J. 2024;25(1):10-5. https://doi.org/10.36953/ECJ.23762625
  41. 41. Oyeogbe AI. Nitrogen management in conservation agriculture. In: Nitrogen in agriculture-physiological, agricultural and ecological aspects. IntechOpen. 2021. https://doi.org/10.5772/INTECHOPEN.96026
  42. 42. Yansheng C, Fengliang Z, Zhongyi Z, Tongbin Z, Huayun X. Biotic and abiotic nitrogen immobilization in soil incorporated with crop residue. Soil Tillage Res. 2020;202:104664. https://doi.org/10.1016/j.still.2020.104664
  43. 43. Wacker TS, Jensen LS, Thorup-Kristensen K. Conservation agriculture affects soil organic matter distribution, microbial metabolic capacity and nitrogen turnover under Danish field conditions. Soil Tillage Res. 2022;224:105508. https://doi.org/10.1016/j.still.2022.105508
  44. 44. McSwiney CP, Snapp SS, Gentry LE. Use of N immobilization to tighten the N cycle in conventional agroecosystems. Ecol Appl. 2010;20(3):648-62. https://doi.org/10.1890/09-0077.1
  45. 45. Sharma T, Das TK, Maity PP, Biswas S, Sudhishri S, Govindasamy P, et al. Long-term conservation agriculture influences weed diversity, water productivity, grain yield and energy budgeting of wheat in north-western Indo-Gangetic plains. Sustainability. 2023;15(9):7290. https://doi.org/10.3390/su15097290
  46. 46. Sen S, Das TK, Dass A, Kumar D, Bhatia A, Bhattacharyya R, et al. Tillage, residue, nitrogen and herbicides effects on weeds and greengram productivity and profitability in conservation agriculture-based maize-wheat-greengram system. Indian J Weed Sci. 2023:380-7. https://doi.org/10.5958/0974-8164.2023.00071.0
  47. 47. Alhammad BA, Roy DK, Ranjan S, Padhan SR, Sow S, Nath D, et al. Conservation tillage and weed management influencing weed dynamics, crop performance, soil properties and profitability in a rice–wheat–greengram system in the eastern Indo-Gangetic plain. Agronomy. 2023;13(7):1953. https://doi.org/10.3390/agronomy13071953
  48. 48. López-Correa JM, Moreno H, Pérez DS, Bromberg F, Andújar D. Towards a true conservation zero tillage system: a proposed solution based on computer vision to herbicide resistance. Comput Electron Agric. 2024;217:108576. https://doi.org/10.1016/j.compag.2023.108576
  49. 49. Nikolić N, Mattivi P, Pappalardo SE, Miele C, De Marchi M, Masin R, et al. Opportunities from unmanned aerial vehicles to identify differences in weed spatial distribution between conventional and conservation agriculture. Sustainability. 2022;14(10):6324. https://doi.org/10.3390/su14106324
  50. 50. Salama HS, Nawar AI, Khalil HE, Shaalan AM. Improvement of maize productivity and N use efficiency in a no-tillage irrigated farming system: effect of cropping sequence and fertilization management. Plants. 2021;10(7):1459. https://doi.org/10.3390/plants10071459
  51. 51. Taylor KM, Nelsen TS, Scow KM, Lundy ME. No-till annual wheat increases plant productivity, soil microbial biomass and soil carbon stabilization relative to intermediate wheatgrass in a Mediterranean climate. Soil Tillage Res. 2024;235:105874. https://doi.org/10.1016/j.still.2023.105874
  52. 52. Veloso MG, Cecagno D, Bayer C. Legume cover crops under no-tillage favor organomineral association in microaggregates and soil C accumulation. Soil Tillage Res. 2019;190:139-46. https://doi.org/10.1016/j.still.2019.03.003
  53. 53. Durairaj ES, Stute JK, Sandler LN. No till farming: agronomic intervention through cover cropping for enhancing crop productivity. In: Jayaraman S, Dalal RC, Patra AK, Chaudhari SK, editors. Conservation agriculture: a sustainable approach for soil health and food security. Singapore: Springer; 2021. https://doi.org/10.1007/978-981-16-0827-8_3
  54. 54. Oelkers J. The use of the No-till technology in autumn wheat cultivation in order to increase the capacity of soil water accumulation and the decrease of fuel costs. Akademos: Revi Şti Inov Cult Artă. 2022:1-64. https://doi.org/10.52673/18570461.22.1-64.08
  55. 55. Tan Y, Chai Q, Li G, Hu F, Yu A, Zhao C, et al. No-till and nitrogen fertilizer reduction improve nitrogen translocation and productivity of spring wheat (Triticum aestivum L.) via promotion of plant transpiration. Front Plant Sci. 2022;13:988211. https://doi.org/10.3389/fpls.2022.988211
  56. 56. Devi S, Singh SP, Yadav RS, Rathore VS, Shivran HR. Effect of tillage, seed rate and nitrogen levels on weeds and yield of wheat. Indian J Weed Sci. 2020;52(4):381-3. https://doi.org/10.5958/0974-8164.2020.00075.1
  57. 57. Bréda NJ. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot. 2003;54(392):2403-17. https://doi.org/10.1093/jxb/erg263
  58. 58. Parker GG. Tamm review: Leaf Area Index (LAI) is both a determinant and a consequence of important processes in vegetation canopies. For Ecol Manag. 2020;477:118496. https://doi.org/10.1016/j.foreco.2020.118496
  59. 59. Mondal S, Chakraborty D. Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity. Geoderma. 2022;405:115443. https://doi.org/10.1016/j.geoderma.2021.115443
  60. 60. Karamanos AJ, Bilalis D, Sidiras N. Effects of reduced tillage and fertilization practices on soil characteristics, plant water status, growth and yield of upland cotton. J Agron Crop Sci. 2004;190(4):262-76. https://doi.org/10.1111/j.1439-037X.2004.00101.x
  61. 61. Martorano LG. Response patterns of soybean (Glycine max) to water conditions in the soil plant atmosphere system, observed in the field and simulated in the DSSAT decision support system. Porto Alegre: UFRGS; 2007.
  62. 62. Mrabet R, Ibno-Namr K, Bessam F, Saber N. Soil chemical quality changes and implications for fertilizer management after 11 years of no-tillage wheat production systems in semiarid Morocco. Land Degrad Dev. 2001;12(6):505-17. https://doi.org/10.1002/ldr.464
  63. 63. Wang Y, Lyu H, Yu A, Wang F, Li Y, Wang P, et al. No-tillage mulch with green manure retention improves maize yield by increasing the net photosynthetic rate. Eur J Agron. 2024;159:127275. https://doi.org/10.1016/j.eja.2024.127275
  64. 64. Nandi RA, Mukherjee S, Bandyopadhyay PK, Saha M, Singh KC, Ghatak P, et al. Assessment and mitigation of soil water stress of rainfed lentil (Lens culinaris Medik) through sowing time, tillage and potassic fertilization disparities. Agric Water Manag. 2023;277:108120. https://doi.org/10.1016/j.agwat.2022.108120
  65. 65. Basu S, Bandyopadhyay KK, Chakraborty D, Chakrabarti B, Pandey R. Effect of tillage, residue, irrigation and nitrogen on growth, yield and nitrogen use efficiency of wheat in an inceptisol. J Indian Soc Soil Sci. 2024;72(1):77-88. https://doi.org/10.5958/0974-0228.2024.00024.0
  66. 66. Cui J, Han H. Carbon isotope discrimination and the factors affecting it in a summer maize field under different tillage systems. PeerJ. 2022;10:e12891. https://doi.org/10.7717/peerj.12891
  67. 67. Li Y, Hou R, Tao F. Interactive effects of different warming levels and tillage managements on winter wheat growth, physiological processes, grain yield and quality in the North China Plain. Agric Ecosyst Environ. 2020;295:106923. https://doi.org/10.1016/j.agee.2020.106923
  68. 68. Ren B, Dong S, Liu P, Zhao B, Zhang J. Ridge tillage improves plant growth and grain yield of waterlogged summer maize. Agric Water Manag. 2016;177:392-9. https://doi.org/10.1016/j.agwat.2016.08.033
  69. 69. Bandyopadhyay PK, Halder S, Mondal K, Singh KC, Nandi R, Ghosh PK, et al. Response of lentil (Lens culinaris) to post-rice residual soil moisture under contrasting tillage practices. Agric Res. 2018;7:463-79. https://doi.org/10.1007/s40003-018-0337-3
  70. 70. Meena BP, Shirale AO, Dotaniya ML, Jha P, Meena AL, Biswas AK, et al. Conservation agriculture: a new paradigm for improving input use efficiency and crop productivity. In: Bisht J, Meena V, Mishra P, Pattanayak A, editors. Conservation agriculture. Singapore: Springer; 2016. https://doi.org/10.1007/978-981-10-2558-7_2
  71. 71. Jayaraman S, Dang YP, Naorem A, Page KL, Dalal RC. Conservation agriculture as a system to enhance ecosystem services. Agriculture. 2021;11(8):718. https://doi.org/10.3390/agriculture11080718
  72. 72. Mulatu G. Influence of conservation agriculture on certain soil qualities both physical and chemical in relation to sustainable agriculture practices: a review. Int J Biochem Biophys Mol Biol. 2024;9:1-3. https://doi.org/10.11648/j.ijbbmb.20240901.11
  73. 73. Li H, Zhang Y, Sun Y, Zhang Q, Liu P, Wang X, et al. No-tillage with straw mulching improved grain yield by reducing soil water evaporation in the fallow period: a 12-year study on the Loess Plateau. Soil Tillage Res. 2022;224:105504. https://doi.org/10.1016/j.still.2022.105504
  74. 74. Carlos FS, Camargo FA, Marcolin E, Veloso MG, Fernandes RS, Bayer C et al. No-tillage promotes C accumulation in soil and a slight increase in yield stability and profitability of rice in subtropical lowland ecosystems. Soil Res. 2022;60(6):601-9. https://doi.org/10.1071/sr21185
  75. 75. Anderson RL. Increasing corn yield with no-till cropping systems: a case study in South Dakota. Renew Agric Food Syst. 2016;31(6):568-73. https://doi.org/10.1017/S1742170515000435
  76. 76. Kumar S, Arya RK, Singh N, Singh S. Productivity of rainfed maize as influenced by hydrogel and mulching under conventional and zero tillage in maize–wheat cropping system. Cereal Res Commun. 2024;52(2):885-98. https://doi.org/10.1007/s42976-023-00407-0
  77. 77. Chauke PB, Nciizah AD, Wakindiki II, Mudau FN, Madikiza S, Motsepe M, et al. No-till improves selected soil properties, phosphorous availability and utilization efficiency and soybean yield on some smallholder farms in South Africa. Front Sustain Food Syst. 2022;6:1009202. https://doi.org/10.3389/fsufs.2022.1009202
  78. 78. Mingotte FL, Jardim CA, Yada MM, Amaral CB, Chiamolera TP, Coelho AP, et al. Impact of crop management and no-tillage system on grain and straw yield of maize crop. Cereal Res Commun. 2020;48:399-407. https://doi.org/10.1007/S42976-020-00051-Y
  79. 79. Mingotte FL, Lemos LB, Jardim CA, FornasieriFilho D. Crop systems and topdressing nitrogen on grain yield and technological attributes of common bean under no-tillage. Pesq Agropec Trop. 2019;49:e54003. https://doi.org/10.1590/1983-40632019V4954003
  80. 80. Omara P, Aula L, Eickhoff EM, Dhillon JS, Lynch T, Wehmeyer GB, et al. Influence of no-tillage on soil organic carbon, total soil nitrogen and winter wheat (Triticum aestivum L.) grain yield. Int J Agron. 2019;(1):9632969. https://doi.org/10.1155/2019/9632969
  81. 81. Li F, Zhang X, Xu D, Ma Q, Le T, Zhu M, et al. No-tillage promotes wheat seedling growth and grain yield compared with plow–rotary tillage in a rice–wheat rotation in the high rainfall region in China. Agronomy. 2022;12(4):865. https://doi.org/10.3390/agronomy12040865
  82. 82. Alsalem M, Salehi A, Zhao J, Rewald B, Bodner G. Combining image analyses tools for comprehensive characterization of root systems from soil-filled rhizobox phenotyping platforms. Int Agrophys. 2021;35(3):257-68. https://doi.org/10.31545/intagr/143121
  83. 83. Kumar N, Nath CP, Das K, Hazra KK, Venkatesh MS, Singh MK, et al. Combining soil carbon storage and crop productivity in partial conservation agriculture of rice-based cropping systems in the Indo-Gangetic Plains. Soil Tillage Res. 2024;239:106029. https://doi.org/10.1016/j.still.2024.106029
  84. 84. Qin W, Niu L, You Y, Cui S, Chen C, Li Z, et al. Effects of conservation tillage and straw mulching on crop yield, water use efficiency, carbon sequestration and economic benefits in the Loess Plateau region of China: a meta-analysis. Soil Tillage Res. 2024;238:106025. https://doi.org/10.1016/j.still.2024.106025
  85. 85. Islam MJ, Cheng M, Kumar U, Maniruzzaman M, Nasreen SS, Hossain MB, et al. Conservation agriculture improves yield and potassium balance in intensive rice systems. Nutr Cycl Agroecosyst. 2024;128(2):233-50. https://doi.org/10.1007/s10705-024-10348-7
  86. 86. Ghosh S, Das TK, Nath CP, Bhatia A, Biswas DR, Bandyopadhyay KK, et al. Weed seedbank, above-ground weed community and crop yields under conventional and conservation agriculture practices in maize-wheat-mungbean rotation. Weed Res. 2023;63(4):270-81. https://doi.org/10.1111/wre.12589
  87. 87. Chhokar RS, Sharma RK, Kumar N, Singh RK, Singh GP, et al. Advancing sowing time and conservation tillage-the climate-resilient approach to enhance the productivity and profitability of wheat. Int J Plant Prod. 2023;17(1):121-31. https://doi.org/10.1007/s42106-022-00216-1
  88. 88. Kiri IZ. A review on plant root architecture and methods for measuring root growth parameters. Duste J Pure Appl Sci; 2023. https://doi.org/10.4314/dujopas.v9i1a.6
  89. 89. Mondal S, Chakraborty D, Das TK, Shrivastava M, Mishra AK, Bandyopadhyay KK, et al. Conservation agriculture had a strong impact on the sub-surface soil strength and root growth in wheat after a 7-year transition period. Soil Tillage Res. 2019;195:104385. https://doi.org/10.1016/j.still.2019.104385
  90. 90. Lynch JP. Harnessing root architecture to address global challenges. Plant J. 2022;109(2):415-31. https://doi.org/10.1111/tpj.15560
  91. 91. Zhang Z, Peng X. Bio-tillage: a new perspective for sustainable agriculture. Soil Tillage Res. 2021;206:104844. https://doi.org/10.1016/j.still.2020.104844
  92. 92. Koszalka V, Camilo EL, Surkamp C, Rampim L, Pott CA, Müller MM, et al. Autumn cover crops increase deep root growth of soybean in no-tillage system. Braz Arch Biol Technol. 2024;67:e24230805. https://doi.org/10.1590/1678-4324-pssm-2024230805
  93. 93. Ruis SJ, Blanco-Canqui H, Elmore RW, Proctor C, Koehler-Cole K, Ferguson RB, et al. Impacts of cover crop planting dates on soils after four years. Agron J. 2020;112(3):1649-65. https://doi.org/10.1002/agj2.20143
  94. 94. Oliveira EM, Wittwer R, Hartmann M, Keller T, Buchmann N, van der Heijden MG, et al. Effects of conventional, organic and conservation agriculture on soil physical properties, root growth and microbial habitats in a long-term field experiment. Geoderma. 2024;447:116927. https://doi.org/10.1016/j.geoderma.2024.116927
  95. 95. Fiorini A, Boselli R, Amaducci S, Tabaglio V. Effects of no-till on root architecture and root-soil interactions in a three-year crop rotation. Eur J Agron. 2018;99:156-66. https://doi.org/10.1016/j.eja.2018.07.009
  96. 96. Jabro JD, Allen BL, Rand T, Dangi SR, Campbell JW. Effect of previous crop roots on soil compaction in 2 yr rotations under a no-tillage system. Land. 2021;10(2):202. https://doi.org/10.3390/land10020202
  97. 97. Moraes ER, Mageste JG, Lana RM, Torres JL, Domingues LA, Lemes EM, et al. Sugarcane root development and yield under different soil tillage practices. Rev Bras Cienc Solo. 2019;43:e0180090. https://doi.org/10.1590/18069657RBCS20180090
  98. 98. Hansel FD, Amado TJ, Ruiz Diaz DA, Rosso LH, Nicoloso FT, Schorr M, et al. Phosphorus fertilizer placement and tillage affect soybean root growth and drought tolerance. Agron J. 2017;109(6):2936-44. https://doi.org/10.2134/agronj2017.04.0202
  99. 99. Chakraborty P, Singh N, Bansal S, Sekaran U, Sexton P, Bly A, et al. Does the duration of no-till implementation influence depth distribution of soil organic carbon, hydro-physical properties and computed tomography-derived macropore characteristics? Soil Tillage Res. 2022;222:105426. https://doi.org/10.2134/agronj2017.04.0202
  100. 100. Han KH, Zhang YS, Jung KH, Cho HR. In-situ estimation of effective rooting depth for upland crops using hand penetration of cone probe. Korean J Agric Sci. 2015;42(3):183-9. https://doi.org/10.7744/CNUJAS.2015.42.3.183
  101. 101. Bulgakov V, Gadzalo I, Demydenko O, Zadubinnaya E, Velichko V, Beloev H, et al. Research on the agrophysical state of podzolized black soil under different transitions to no-till treatment in agrocenosis. J Ecol Eng. 2023;24(10). https://doi.org/10.12911/22998993/170731
  102. 102. Hou R, Ouyang Z, Han D, Wilson GV. Effects of field experimental warming on wheat root distribution under conventional tillage and no-tillage systems. Ecol Evol. 2018;8(5):2418-27. https://doi.org/10.1002/ECE3.3864
  103. 103. Mondal S, Chakraborty D. Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity. Geoderma. 2022;405:115443. https://doi.org/10.1016/j.geoderma.2021.115443
  104. 104. Fink JR, Inda AV, Bavaresco J, Sánchez-Rodríguez AR, Barrón V, Torrent J, et al. Diffusion and uptake of phosphorus and root development of corn seedlings, in three contrasting subtropical soils under conventional tillage or no-tillage. Biol Fertil Soils. 2016;52:203-10. https://doi.org/10.1007/S00374-015-1067-3
  105. 105. Sainju UM. No-till farming systems in North America. In: No-till farming systems for sustainable agriculture: challenges and opportunities. Cham: Springer International Publishing. 2020. p. 587-99 https://doi.org/10.1007/978-3-030-46409-7_32
  106. 106. Lampurlanés J, Cantero-Martínez C. Soil bulk density and penetration resistance under different tillage and crop management systems and their relationship with barley root growth. Agron J. 2003;95(3):526-36. https://doi.org/10.2134/agronj2003.5260
  107. 107. Alguacil MD, Roldán A, Salinas-García JR, Querejeta JI. No tillage affects the phosphorus status, isotopic composition and crop yield of Phaseolus vulgaris in a rain-fed farming system. J Sci Food Agric. 2011;91(2):268-72. https://doi.org/10.1002/jsfa.4180
  108. 108. Bagnall DK, Morgan CL. SLAKES and 3D scans characterize management effects on soil structure in farm fields. Soil Tillage Res. 2021;208:104893. https://doi.org/10.1016/j.still.2020.104893
  109. 109. Köhl L, Oehl F, van der Heijden MG. Agricultural practices indirectly influence plant productivity and ecosystem services through effects on soil biota. Ecol Appl. 2014;24(7):1842-53. https://doi.org/10.1890/13-1821.1
  110. 110. Karamanos AJ, Bilalis D, Sidiras N. Effects of reduced tillage and fertilization practices on soil characteristics, plant water status, growth and yield of upland cotton. J Agron Crop Sci. 2004;190(4):262-76. https://doi.org/10.1111/j.1439-037X.2004.00101.x
  111. 111. Bono A, Alvarez R, Buschiazzo DE, Cantet RJ. Tillage effects on soil carbon balance in a semiarid agroecosystem. Soil Sci Soc Am J. 2008;72(4):1140-9. https://doi.org/10.2136/sssaj2007.0250
  112. 112. Kemper WD, Schneider NN, Sinclair TR. No-till can increase earthworm populations and rooting depths. J Soil Water Conserv. 2011;66(1):13A-7A. https://doi.org/10.2489/jswc.66.1.13A
  113. 113. Bergamaschi H, Dalmago GA, Bergonci JI, Krüger CA, Heckler BM, Comiran F, et al. Intercepted solar radiation by maize crops subjected to different tillage systems and water availability levels. Pesq Agropec Bras. 2010;45:1331-41. https://doi.org/10.1590/S0100-204X2010001200001
  114. 114. Jian-bo WA, Chang-rong YA, En-ke LI, Bao-qing CH, Heng-heng ZH. Effects of long-term no-tillage with straw mulch on photosynthetic characteristics of flag leaves and dry matter accumulation and translocation of winter wheat in dryland. J Plant Nutr Fertil. 2015;21(2):296-305.
  115. 115. Aleksandrovna BE, Vladimirovich EF, Hadjiumarovich HR, Filippovna ER. Photosynthetic productivity of winter wheat cultivated using no-till technology. Agrar Nauchn Zh; 2021. https://doi.org/10.28983/ASJ.Y2021I3PP14-17
  116. 116. Harish MN, Choudhary AK, Bhupenchandra I, Dass A, Rajanna GA, Singh VK, et al. Double zero-tillage and foliar-P nutrition coupled with bio-inoculants enhance physiological photosynthetic characteristics and resilience to nutritional and environmental stresses in maize-wheat rotation. Front Plant Sci. 2022;13:959541. https://doi.org/10.3389/fpls.2022.959541
  117. 117. Guo Y, Fan H, Li P, Wei J, Qiu H. Photosynthetic physiological basis of no tillage with wheat straw returning to improve maize yield with plastic film mulching in arid irrigated areas. Plants. 2023;12(6):1358. https://doi.org/10.3390/plants12061358
  118. 118. Mitchell JP, Singh PN, Wallender WW, Munk DS, Wroble JF, Horwath WR, et al. No-tillage and high-residue practices reduce soil water evaporation. Calif Agric. 2012;66(2). https://doi.org/10.3733/ca.v066n02p55
  119. 119. Liu S, Zhang XY, Yang J, Drury CF. Effect of conservation and conventional tillage on soil water storage, water use efficiency and productivity of corn and soybean in Northeast China. Acta Agric Scand B Soil Plant Sci. 2013;63(5):383-94. https://doi.org/10.1080/09064710.2012.762803
  120. 120. Dalmago GA, Bergamaschi H, Bergonci JI, Krüger CA, Comiran F, Heckler BM, et al. Water retention and availability to plants, in soil under direct planting and conventional preparation. Rev Bras Eng Agric Ambient. 2009;13:855-64. https://doi.org/10.1590/S1415-43662009000700007
  121. 121. Shaver TM, Peterson GA, Ahuja LR, Westfall DG, Sherrod LA, Dunn G. Surface soil physical properties after twelve years of dryland no-till management. Soil Sci Soc Am J. 2002;66(4):1296-303. https://doi.org/10.2136/sssaj2002.1296
  122. 122. Samanta S, Bagnall D, Ale S, Morgan CL, Molling CC. Modeling tillage effects on plant-available water by considering changes in soil structure. J ASABE. 2024;67(3):589-99. https://doi.org/10.13031/ja.15695
  123. 123. Wang Y, Zhang Y, Zhou S, Wang Z. Meta-analysis of no-tillage effect on wheat and maize water use efficiency in China. Sci Total Environ. 2018;635:1372-82. https://doi.org/10.1016/j.scitotenv.2018.04.202
  124. 124. Elsayed S, Mistele B, Schmidhalter U. Can changes in leaf water potential be assessed spectrally? Funct Plant Biol. 2011;38(6):523-33. https://doi.org/10.1071/FP11021
  125. 125. Stipešević B, Kladivko EJ. Effects of winter wheat cover crop desiccation times on soil moisture, temperature and early maize growth. Plant Soil Environ. 2005;51(6):255-61. https://doi.org/10.17221/3583-PSE
  126. 126. Acharya BS, Dodla S, Gaston LA, Darapuneni M, Wang JJ, Sepat S, et al. Winter cover crops effect on soil moisture and soybean growth and yield under different tillage systems. Soil Tillage Res. 2019;195:104430. https://doi.org/10.1016/j.still.2019.104430
  127. 127. Peng Z, Wang L, Xie J, Li L, Coulter JA, Zhang R, et al. Conservation tillage increases water use efficiency of spring wheat by optimizing water transfer in a semi-arid environment. Agronomy. 2019;9(10):583. https://doi.org/10.3390/agronomy9100583
  128. 128. Vincent-Caboud L, Casagrande M, David C, Ryan MR, Silva EM, Peigne J. Using mulch from cover crops to facilitate organic no-till soybean and maize production. A review. Agron Sustain Dev. 2019;39:1-5. https://doi.org/10.1007/s13593-019-0590-2
  129. 129. Wang H, Lemke R, Goddard T, Sprout C. Tillage and root heat stress in wheat in central Alberta. Can J Soil Sci. 2007;87(1):3-10. https://doi.org/10.4141/S06-016
  130. 130. Aroca R, Porcel R, Ruiz-Lozano JM. Regulation of root water uptake under abiotic stress conditions. J Exp Bot. 2012;63(1):43-57. https://doi.org/10.1093/jxb/err266
  131. 131. Freitas RM, Dombroski JL, Freitas FC, Nogueira NW, Pinto JR. Physiological responses of cowpea under water stress and rewatering in no-tillage and conventional tillage systems. Rev Caatinga. 2017;30(3):559-67. https://doi.org/10.1590/1983-21252017v30n303rc
  132. 132. Thorup-Kristensen K. Studying deep rooting and its value for crops. In: EGU General Assembly Conference Abstracts; 2020. https://doi.org/10.5194/egusphere-egu2020-22488
  133. 133. Rahman MH, Okubo A, Sugiyama S, Mayland HF. Physical, chemical and microbiological properties of an Andisol as related to land use and tillage practice. Soil Tillage Res. 2008;101(1-2):10-9. https://doi.org/10.1016/j.still.2008.05.006
  134. 134. Islam MJ, Cheng M, Kumar U, Maniruzzaman M, Nasreen SS, Hossain MB, et al. Conservation agriculture improves yield and potassium balance in intensive rice systems. Nutr Cycl Agroecosyst. 2024;128(2):233-50. https://doi.org/10.1007/s10705-024-10348-7
  135. 135. Szczepanek M, Piekarczyk M, Błaszczyk K. Spatial distribution of soil macroelements, their uptake by plants and green pea yield under strip-till technology. Agronomy. 2024;14(4):711. https://doi.org/10.3390/agronomy14040711
  136. 136. Kumar A, Behera UK, Dhar S, Babu S, Singh R, Upadhyay PK, et al. Deciphering the role of phosphorus management under conservation agriculture based wheat production system. Front Sustain Food Syst. 2023;7:1235141. https://doi.org/10.3389/fsufs.2023.1235141
  137. 137. Thomas GA, Dalal RC, Standley J. No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil Tillage Res. 2007;94(2):295-304. https://doi.org/10.1016/j.still.2006.08.005
  138. 138. Carpenter-Boggs L, Stahl PD, Lindstrom MJ, Schumacher TE. Soil microbial properties under permanent grass, conventional tillage and no-till management in South Dakota. Soil Tillage Res. 2003;71(1):15-23. https://doi.org/10.1016/S0167-1987(02)00158-7
  139. 139. Cline WR. Global warming and agriculture: new country estimates show developing countries face declines in agricultural productivity; 2009.
  140. 140. Watts JD, Natali SM, Minions C, Risk D, Arndt K, Zona D, et al. Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada. Environ Res Lett. 2021;16(8):084051. https://doi.org/10.1088/1748-9326/ac1222
  141. 141. Jat RA, Jinger D, Kumar K, Singh R, Jat SL, Dinesh D, et al. Scaling-up of conservation agriculture for climate change resilient agriculture in South Asia. In: Wani SP, Raju KV, Bhattacharyya T, editors. Scaling up solutions for farmers. Cham: Springer; 2021. p. 351-80. https://doi.org/10.1007/978-3-030-77935-1_11
  142. 142. Lal R. Promoting “4 per thousand” and “Adapting African Agriculture” by south-south cooperation: Conservation agriculture and sustainable intensification. Soil Tillage Res. 2019;188:27-34. https://doi.org/10.1016/j.still.2017.12.015
  143. 143. Smith P, Martino D, Cai Z. Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA, editors. Climate change 2007: Mitigation of climate change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2007. Intergovernmental Panel on Climate Change (IPCC). p. 497–540.
  144. 144. Yue K, Fornara DA, Heděnec P, Wu Q, Peng Y, Peng X et al. No tillage decreases GHG emissions with no crop yield tradeoff at the global scale. Soil Tillage Res. 2023;228:105643. https://doi.org/10.1016/j.still.2023.105643
  145. 145. Cárceles Rodríguez B, Durán-Zuazo VH, Soriano Rodríguez M, García-Tejero IF, Gálvez Ruiz B, et al. Conservation agriculture as a sustainable system for soil health: A review. Soil Syst. 2022;6(4):87. https://doi.org/10.3390/soilsystems6040087
  146. 146. Dugan I, Pereira P, Kisic I, Matisic M, Bogunovic I. Analyzing the influence of conservation tillage and manure on soil parameter modulations in croplands. Plants. 2024;13(5):607. https://doi.org/10.3390/plants13050607
  147. 147. Toth M, Stumpp C, Klik A, Strauss P, Mehdi-Schulz B, Liebhard G et al. Long-term effects of tillage systems on soil health of a silt loam in Lower Austria. Soil Tillage Res. 2024;241:106120. https://doi.org/10.1016/j.still.2024.106120
  148. 148. Kaur P, Lamba J, Way TR, Balkcom KS, Sanz-Saez A, Watts DB, et al. Characterization of soil pores in strip-tilled and conventionally-tilled soil using X-ray computed tomography. Soil Tillage Res. 2024;239:106035. https://doi.org/10.1016/j.still.2024.106035
  149. 149. Jat RA. Conservation agriculture for sustainable crop intensification: an overview. Indian J Fert. 2015:48-55.
  150. 150. Jat HS, Kakraliya M, Mukhopadhyay R, Kumar S, Choudhary M, Sharma PC, et al. Conservation agriculture works as a catalyst for sustainable sodic soil reclamation and enhances crop productivity and input use efficiency: A scientific inquiry. J Environ Manage. 2024;358:120811. https://doi.org/10.1016/j.jenvman.2024.120811
  151. 151. Han C, Zhou W, Gu Y, Wang J, Zhou Y, Xue Y, et al. Effects of tillage regime on soil aggregate-associated carbon, enzyme activity and microbial community structure in a semiarid agroecosystem. Plant Soil. 2024;498(1):543-59. https://doi.org/10.1007/s11104-023-06453-1
  152. 152. Veloso MG, Angers DA, Chantigny MH, Bayer C. Mineral-organic associations are enriched in both microbial metabolites and plant residues in a subtropical soil profile under no-tillage and legume cover cropping. Soil Res. 2022;60(6):590-600. https://doi.org/10.1071/SR21151
  153. 153. Ding X, Li G, Zhao X, Lin Q, Wang X. Biochar application significantly increases soil organic carbon under conservation tillage: an 11-year field experiment. Biochar. 2023;5(1):28. https://doi.org/10.1007/s42773-023-00226-w
  154. 154. Ahmad N, Virk AL, Hafeez MB, Ercisli S, Golokhvast KS, Qi Y, et al. Effects of different tillage and residue management systems on soil organic carbon stock and grain yield of rice–wheat double cropping system. Ecol Indic. 2024;158:111452. https://doi.org/10.1626/pps.7.329
  155. 155. Chen S, Yao F, Mi G, Wang L, Wu H, Wang Y. Crop rotation increases root biomass and promotes the correlation of soil dissolved carbon with the microbial community in the rhizosphere. Front Bioeng Biotechnol. 2022;10:1081647. https://doi.org/10.3389/fbioe.2022.1081647
  156. 156. Vieira ME, Lopes LD, Costa FM, Talamini V, Pacheco EP, Fernandes MF, et al. Different no-till grain production systems with Urochloa spp. affect soil microbial community structure, biomass and activity in a tropical Ultisol. Soil Ecol Lett. 2024;6(1):230191. https://doi.org/10.1007/s42832-023-0191-5
  157. 157. Chen H, Dai Z, Veach AM, Zheng J, Xu J, Schadt CW, et al. Global meta-analyses show that conservation tillage practices promote soil fungal and bacterial biomass. Agric Ecosyst Environ. 2020;293:106841. https://doi.org/10.1016/j.agee.2020.106841
  158. 158. Sekaran U, Sagar KL, Denardin LG, Singh J, Singh N, Abagandura GO, et al. Responses of soil biochemical properties and microbial community structure to short and long-term no-till systems. Eur J Soil Sci. 2020;71(6):1018-33. https://doi.org/10.1111/EJSS.12924
  159. 159. Wu G, Chen Z, Jiang N, Jiang H, Chen L. Effects of long-term no-tillage with different residue application rates on soil nitrogen cycling. Soil Tillage Res. 2021;212:105044. https://doi.org/10.1016/J.STILL.2021.105044
  160. 160. Vazquez E, Benito M, Masaguer A, Espejo R, Díaz-Pinés E, Teutscherova N. Long-term effects of no tillage and Ca-amendment on the activity of soil proteases and β-glucosidase in a Mediterranean agricultural field. Eur J Soil Biol. 2019;95:103135. https://doi.org/10.1016/J.EJSOBI.2019.103135
  161. 161. Chellappa J, Sagar KL, Sekaran U, Kumar S, Sharma P. Soil organic carbon, aggregate stability and biochemical activity under tilled and no-tilled agroecosystems. J Agric Food Res. 2021;4:100139. https://doi.org/10.1016/J.JAFR.2021.100139
  162. 162. Mirzavand J, Asadi-Rahmani H, Moradi-Talebbeigi R. Biological indicators of soil quality under conventional, reduced and no-tillage systems. Arch Agron Soil Sci. 2022;68(3):311-24. https://doi.org/10.1080/03650340.2020.1832656
  163. 163. Nevins CJ, Lacey C, Armstrong S. Cover crop enzyme activities and resultant soil ammonium concentrations under different tillage systems. Eur J Agron. 2021;126:126277. https://doi.org/10.1016/j.eja.2021.126277
  164. 164. Yadav D, Wati L, Yadav DB, Kumar A. Long-term influence of conservation tillage on soil organic carbon and microbial diversity. Indian J Agric Sci. 2020;90(7):1323-7. https://doi.org/10.56093/ijas.v90i7.105604
  165. 165. Ghosh S, Das TK, Sharma DK, Gupta K. Potential of conservation agriculture for ecosystem services: A review. Indian J Agric Sci. 2019;89(10):1572-9. https://doi.org/10.56093/ijas.v89i10.94578
  166. 166. Jat RK, Bijarniya D, Kakraliya SK, Sapkota TB, Kakraliya M, Jat ML. Precision nutrient rates and placement in conservation maize-wheat system: effects on crop productivity, profitability, nutrient-use efficiency and environmental footprints. Agronomy. 2021;11(11):2320. https://doi.org/10.3390/agronomy11112320
  167. 167. Nandan R, Poonia SP, Singh SS, Nath CP, Kumar V, Malik RK, et al. Potential of conservation agriculture modules for energy conservation and sustainability of rice-based production systems of Indo-Gangetic Plain region. Environ Sci Pollut Res. 2021;28(1):246-61. https://doi.org/10.1007/s11356-020-10395-x
  168. 168. Gangopadhyay S, Chowdhuri I, Das N, Pal SC, Mandal S. The effects of no-tillage and conventional tillage on greenhouse gas emissions from paddy fields with various rice varieties. Soil Tillage Res. 2023;232:105772. https://doi.org/10.1016/j.still.2023.105772
  169. 169. Iqbal J, Khaliq T, Ahmad A, Khan KS, Haider MA, Ali MM, et al. Productivity, profitability and energy use efficiency of wheat-maize cropping under different tillage systems. Farming Syst. 2024;2(3):100085. https://doi.org/10.1016/j.farsys.2024.100085
  170. 170. Meena BR, Parihar CM, Nayak HS, Patra K, Rana B, Abdallah AM, et al. Effect of nutrient management on yield, economics, water and energy use efficiency of maize (Zea mays) under conservation agriculture based maize-wheat (Triticum aestivum) system. Indian J Agric Sci. 2021;91(9):1408-12. https://doi.org/10.56093/ijas.v91i9.116101
  171. 171. Culliney TW. Crop losses to arthropods. In: Pimentel D, Peshin R, editors. Integrated pest management: pesticide problems. Cham: Springer; 2014. p. 201-25. https://doi.org/10.1007/978-94-007-7796-5_8
  172. 172. Monobrullah M, ICAR RCER P. Insect pest and disease management in conservation agriculture. In: Conservation agriculture for climate resilient farming & doubling farmers’ income. Patna: ICAR Research Complex for Eastern Region; 2019.
  173. 173. Paddock KJ, Veum KS, Finke DL, Ericsson AC, Hibbard BE. Soil microbes from conservation agriculture systems reduce growth of Bt-resistant western corn rootworm larvae. J Pest Sci. 2024;97(3):1677-89. https://doi.org/10.1007/s10340-023-01725-2
  174. 174. Furlan L, Milosavljević I, Chiarini F, Benvegnù I. Effects of conventional versus no-tillage systems on the population dynamics of elaterid pests and the associated damage at establishment of maize crops. Crop Prot. 2021;149:105751. https://doi.org/10.1016/j.cropro.2021.105751
  175. 175. Hobbs PR, Sayre K, Gupta R. The role of conservation agriculture in sustainable agriculture. Philos Trans R Soc Lond B Biol Sci. 2008;363(1491):543-55. https://doi.org/10.1098/rstb.2007.2169
  176. 176. Theron JS, van Coller GJ, Rose LJ, Labuschagne J, Swanepoel PA. The effect of crop rotation and tillage practice on Fusarium crown rot and agronomic parameters of wheat in South Africa. Crop Prot. 2023;166:106175. https://doi.org/10.1016/j.cropro.2022.106175
  177. 177. Rathore R, Forristal D, Spink J, Dowling D, Germaine KJ. Investigating the impact of tillage and crop rotation on the prevalence of phlD-carrying Pseudomonas potentially involved in disease suppression. Microorganisms. 2023;11(10):2459. https://doi.org/10.3390/microorganisms11102459
  178. 178. Masson AS, Vermeire ML, Leng V, Simonin M, Tivet F, Thi HN, et al. Enrichment in biodiversity and maturation of the soil food web under conservation agriculture is associated with suppression of rice-parasitic nematodes. Agric Ecosyst Environ. 2022;331:107913. https://doi.org/10.1016/j.agee.2022.107913
  179. 179. Mosquera VB, Delgado JA, Alwang JR, López LE, Ayala YC, Domínguez JMA, et al. Conservation agriculture increases yields and economic returns of potato, forage and grain systems of the Andes. Agron J. 2019;111(6):2747-53. https://doi.org/10.2134/agronj2019.04.0280
  180. 180. Latif MT, Hussain M, Zohaib A, Hassan I. Performance evaluation of super seeder for wheat sowing in rice-wheat cropping system of Pakistan. Sarhad J Agric. 2024;40(1):109-18. https://doi.org/10.17582/journal.sja/2024/40.1.109.118
  181. 181. Islam MA, Bell RW, Johansen C, Jahiruddin M, Haque ME, Vance W. Conservation agriculture effects on yield and profitability of rice-based systems in the Eastern Indo-Gangetic Plain. Exp Agric. 2022;58:e33. https://doi.org/10.1017/S0014479722000291
  182. 182. Vandeveer M, Holman JD, Schlegel A, O’Brien D, Obour AK, Haag L, et al. Economics of alternative tillage systems in dryland crop rotations in US Great Plains. Soil Tillage Res. 2023;232:105751. https://doi.org/10.1016/j.still.2023.105751
  183. 183. Honnali S, Kuchanur P, Biradar DP, Aladakatti YR, Hebbar M, Nirmalnath PJ, et al. Influence of reduced nutrient levels on productivity, profitability and resource use efficiency of rainfed pigeonpea (Cajanus cajan) under resource-conservation practices. Indian J Agron. 2021;66(2):191-8. https://doi.org/10.59797/ija.v66i2.2839
  184. 184. Huszar PC, Cochrane HC. Constraints to conservation farming in Java’s uplands. J Soil Water Conserv. 1990;45(3):420-3. https://doi.org/10.1080/00224561.1990.12456510
  185. 185. Vitali A, Moretti B, Lerda C, Said-Pullicino D, Celi L, Romani M, et al. Conservation tillage in temperate rice cropping systems: Crop production and soil fertility. Field Crops Res. 2024;308:109276. https://doi.org/10.1016/j.fcr.2024.109276

Downloads

Download data is not yet available.