Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Modulation of antioxidant enzymes and growth traits by exogenous application of auxin and cytokinin in wheat under induced drought stress

DOI
https://doi.org/10.14719/pst.9410
Submitted
11 May 2025
Published
11-11-2025 — Updated on 27-11-2025
Versions

Abstract

An experiment was conducted to study the effect of phytohormones (auxin and cytokinin) in mitigation of drought stress on pairs of contrasting genotypes of wheat i.e. tolerant (DBW 110 and HI 1655) and susceptible (BW Local 1 and BW Local 2) at seedling stage under four conditions. Drought was induced by PEG 6000. It was observed that phytohormones had a significant role in mitigating stress by adjusting growth parameters, physiological parameters, reactive oxygen species level and antioxidants activity. Application of auxin and cytokinin leads to desirable changes in shoot length (2.36 and 3.26), root length (1.21 and 1.17), seedling length (2.36 and 2.74), fresh shoot weight (1.24 and 1.28), fresh root weight (1.41 and 1.21), fresh seeding weight (3.37 and 4.19), total chlorophyll (1.72 and 1.63), maximal quantum yield of photosystem II (1.51 and 1.70), stomatal conductance (1.38 and 1.19), catalase activity (4.75 and 5.68), ascorbate peroxidase activity (14.63 and 18.05) and proline content (1.37 and 1.28) and hydrogen peroxide content (1.22 and 1.31) represented in average folds as compared to control. Fresh seedling weight showed positively significant correlation with fresh shoot weight (r=1.00**), shoot length (r=1.00**), catalase (r=0.99*), ascorbate peroxidase (r=0.99*), seedling length (r=0.98*), total chlorophyll (r=0.97*) and negative and significant correlation with hydrogen peroxide (r=-1.00**) under effect of auxin whereas it showed positively significant correlation with fresh shoot weight (r=1.00*), chlorophyll b (r=0.98*), stomatal conductance (r=0.98*), maximal quantum yield of photosystem II (r=0.97*), total chlorophyll (r=0.96*), chlorophyll a (r=0.95*), fresh root weight (r=0.95*) and significant and negative correlation with hydrogen peroxide (r=-1.00*) under effect of cytokinin indicating that these are the important traits targeted by the phytohormones to mitigate the stress. Biplot analysis revealed that traits were grouped as positively correlated (all traits except H2O2) and negatively correlated (H2O2) to the drought tolerance. Study concluded that application of auxin and cytokine can minimize yield reduction of susceptible high yielding genotypes under drought stress. Further study under natural stress is required to understand the mechanism of phytohormones in mitigation of drought.

References

  1. 1. Soofizada Q. Evaluation of the effects of nutrient management on grain yield, quality and rheological properties of common wheat varieties (Triticum aestivum L.). Ann Univ Craiova Agric Mont Cadastre Ser. 2023;54(1):209-18.
  2. 2. Sharma V, Dodiya NS, Dubey RB, Khandagale SG, Shekhawat N. Estimation of heterosis for yield and some yield components in bread wheat. J Pharm Pharmacognosy Res. 2018;7(6):1742-5.
  3. 3. Sharma V, Dodiya NS, Dubey RB, Khan R. Combining ability analysis in bread wheat (Triticum aestivum L. Em. Thell) under different environmental conditions. Bangladesh J Bot. 2019;48(1):85-93. https://doi.org/10.3329/bjb.v48i1.47419
  4. 4. Sharma V, Kamaluddin. Heterosis for yield and physio-biochemical traits in bread wheat (Triticum aestivum L.) under different environmental conditions. Bangladesh J Bot. 2020;49(3):515-20. https://doi.org/10.3329/bjb.v49i3.49618
  5. 5. Sharma V, Dubey RB, Khan R. Genotype-environment interaction on stability of grain yield and physio-biochemical traits in bread wheat (Triticum aestivum L.). Bangladesh J Bot. 2019;48(4):1143-51. https://doi.org/10.3329/bjb.v48i4.49070
  6. 6. Ahmad A, Aslam Z, Javed T, Hussain S, Raza A, Shabbir R, et al. Screening of wheat (Triticum aestivum L.) genotypes for drought tolerance through agronomic and physiological response. Agronomy. 2022;12(2):287. https://doi.org/10.3390/agronomy12020287
  7. 7. Food and Agriculture Organization. Crop prospects and food situation. Quarterly Global Report No. 4. Rome; 2021.
  8. 8. Nyaupane S, Bhandari MR, Dhakal A, Shrestha S, Gurung R, Thapa P, et al. Effect of drought stress and tolerance in wheat. J Biol Todays World. 2023;12(5):1-2. https://doi.org/10.2139/ssrn.4539069
  9. 9. Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, et al. Crop production under drought and heat stress: Plant responses and management options. Front Plant Sci. 2017;8:1147. https://doi.org/10.3389/fpls.2017.01147
  10. 10. Sabra A, Daayf F, Renault S. Differential physiological and biochemical responses of three Echinacea species to salinity stress. Scientia Horticulturae. 2012;135:23-31. https://doi.org/10.1016/j.scienta.2011.11.024
  11. 11. Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S. Response mechanism of plants to drought stress. Horticulturae. 2021;7(3):50. https://doi.org/10.3390/horticulturae7030050
  12. 12. Molinari HBC, Marur CJ, Daros E, de Campos MKF, de Carvalho JFRP, Bespalhok Filho JCB, et al. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia Plantarum. 2007;130(2):218-29. https://doi.org/10.1111/j.1399-3054.2007.00909.x
  13. 13. Sosnowski J, Truba M, Vasileva V. The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture. 2023;13(3):724. https://doi.org/10.3390/agriculture13030724
  14. 14. Abdel Latef AA, Akter A, Tahjib-Ul-Arif M. Foliar application of auxin or cytokinin can confer salinity stress tolerance in Vicia faba L. Agronomy. 2021;11(4):790. https://doi.org/10.3390/agronomy11040790
  15. 15. Casanova-Sáez R, Mateo-Bonmatí E, Ljung K. Auxin metabolism in plants. Cold Spring Harb Perspect Biol. 2021;13(3):a039867. https://doi.org/10.1101/cshperspect.a039867
  16. 16. Iqbal S, Wang X, Mubeen I, Kamran M, Kanwal I, Díaz GA, et al. Phytohormones trigger drought tolerance in crop plants: outlook and future perspectives. Front Plant Sci. 2022;12:799318. https://doi.org/10.3389/fpls.2021.799318
  17. 17. Hönig M, Plíhalová L, Husičková A, Nisler J, Doležal K. Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int J Mol Sci. 2018;19(12):4045. https://doi.org/10.3390/ijms19124045
  18. 18. Abid M, Tian Z, Ata-Ul-Karim ST, Cui Y, Liu Y, Zahoor R, et al. Nitrogen nutrition improves the potential of wheat (Triticum aestivum L.) to alleviate the effects of drought stress during vegetative growth periods. Front Plant Sci. 2016;7:981. https://doi.org/10.3389/fpls.2016.00981
  19. 19. Chugh V, Kaur D, Purwar S, Kaushik P, Sharma V, Kumar H, et al. Applications of molecular markers for developing abiotic-stress-resilient oilseed crops. Life. 2023;13(1):88. https://doi.org/10.3390/life13010088
  20. 20. Sarker U, Oba S. Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci Rep. 2018;8(1):16496. https://doi.org/10.1038/s41598-018-34944-0
  21. 21. Sofo A, Scopa A, Nuzzaci M, Vitti A. Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci. 2015;16(6):13561-78. https://doi.org/10.3390/ijms160613561
  22. 22. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1-15. https://doi.org/10.1104/pp.24.1.1
  23. 23. Chance B, Maehly AC. Assay of catalases and peroxidases. Methods Biochem Anal. 1955;2:764-817. https://doi.org/10.1016/S0076-6879(55)02300-8
  24. 24. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22(5):867-80. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  25. 25. Karuppanapandian T, Sinha PB, Haniya AK, Premkumar G, Manoharan K. Aluminium-induced changes in antioxidative enzyme activities, hydrogen peroxide content and cell wall peroxidase activity in green gram (Vigna radiata) roots. J Plant Biol. 2006;33(3):241-8.
  26. 26. Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205-7. https://doi.org/10.1007/BF00018060
  27. 27. Khandagale SG, Dubey RB, Sharma V, Khan R. Response of physiological traits of maize to moisture stress induced at different developmental stages. Int J Chem Stud. 2018;6:2757-61.
  28. 28. Sharma V, Dodiya NS, Dubey RB, Khandagale SG, Khan R. Combining ability analysis over environments in bread wheat. Electron J Plant Breed. 2019;10(4):1397-404. https://doi.org/10.5958/0975-928X.2019.00179.0
  29. 29. Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, et al. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants. 2021;10(2):259. https://doi.org/10.3390/plants10020259
  30. 30. Oguz MC, Aycan M, Oguz E, Poyraz I, Yildiz M. Drought stress tolerance in plants: interplay of molecular, biochemical and physiological responses in important development stages. Physiologia. 2022;2(4):180-97. https://doi.org/10.3390/physiologia2040015
  31. 31. Bukhari MA, Ahmad Z, Ashraf MY, Afzal M, Nawaz F, Nafees M, et al. Silicon mitigates drought stress in wheat (Triticum aestivum) through improving photosynthetic pigments, biochemical and yield characters. Silicon. 2021;13:4757-72. https://doi.org/10.1007/s12633-020-00797-4
  32. 32. Dwivedi SK, Arora A, Singh VP, Singh GP. Induction of water deficit tolerance in wheat due to exogenous application of plant growth regulators: membrane stability, water relations and photosynthesis. Photosynthetica. 2018;56:478-86. https://doi.org/10.1007/s11099-017-0695-2
  33. 33. Ahmed HG, Zeng Y, Yang X, Anwaar HA, Mansha MZ, Hanif CM, et al. Conferring drought-tolerant wheat genotypes through morpho-physiological and chlorophyll indices at seedling stage. Saudi J Biol Sci. 2020;27(8):2116-23.https://doi.org/10.1016/j.sjbs.2020.06.019
  34. 34. Nahar S, Vemireddy LR, Sahoo L, Tanti B. Antioxidant protection mechanisms reveal significant response in drought-induced oxidative stress in some traditional rice of Assam, India. Rice Sci. 2018;25(4):185-96. https://doi.org/10.1016/j.rsci.2018.06.002
  35. 35. Nyaupane S, Poudel MR, Panthi B, Dhakal A, Paudel H, Bhandari R. Drought stress effect, tolerance and management in wheat-a review. Cogent Food Agric. 2024;10(1):2296094. https://doi.org/10.1080/23311932.2023.2296094
  36. 36. Wang Y, Guo H, Wu X, Wang J, Li H, Zhang R. Transcriptomic and physiological responses of contrasting maize genotypes to drought stress. Front Plant Sci. 2022;13:928897. https://doi.org/10.3389/fpls.2022.928897
  37. 37. Harb A, Simpson C, Guo W, Govindan G, Kakani VG, Sunkar R. The effect of drought on transcriptome and hormonal profiles in barley genotypes with contrasting drought tolerance. Front Plant Sci. 2020;11:618491. https://doi.org/10.3389/fpls.2020.618491
  38. 38. Sharma V, Singh CM, Chugh V, Prajapati PK, Mishra A, Kaushik P, et al. Morphophysiological and biochemical responses of field pea genotypes under terminal heat stress. Plants. 2023;12(2):256. https://doi.org/10.3390/plants12020256
  39. 39. Anjum SA, Tanveer M, Hussain S, Bao M, Wang L, Khan I, et al. Cadmium toxicity in maize (Zea mays)-consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res. 2015;22:17022-30. https://doi.org/10.1007/s11356-015-4882-z
  40. 40. Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, et al. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci. 2017;8:69. https://doi.org/10.3389/fpls.2017.00069
  41. 41. Yang SL, Lan SS, Gong M. Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol. 2009;166:1694-9. https://doi.org/10.1016/j.jplph.2009.04.006
  42. 42. Zafar MM, Chattha WS, Khan AI, Zafar S, Subhan M, Saleem H, et al. Drought and heat stress on cotton genotypes suggested agro-physiological and biochemical features for climate resilience. Front Plant Sci. 2023;14:1265700. https://doi.org/10.3389/fpls.2023.1265700
  43. 43. Zhao Q, Ma Y, Huang X, Song L, Li N, Qiao M, et al. GABA application enhances drought stress tolerance in wheat seedlings (Triticum aestivum L.). Plants. 2023;12(13):2495. https://doi.org/10.3390/plants12132495
  44. 44. Nasirzadeh L, Sorkhilaleloo B, Majidi Hervan E, Fatehi F. Changes in antioxidant enzyme activities and gene expression profiles under drought stress in tolerant, intermediate and susceptible wheat genotypes. Cereal Res Commun. 2021;49:83-9. https://doi.org/10.1007/s42976-020-00085-2
  45. 45. Wang X, Liu H, Yu F, Hu B, Jia Y, Sha H, et al. Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Sci Rep. 2019;9(1):8543. https://doi.org/10.1038/s41598-019-44958-x
  46. 46. Huseynova IM. Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought. Biochim Biophys Acta. 2012;1817(8):1516-23. https://doi.org/10.1016/j.bbabio.2012.02.037
  47. 47. Contiliani DF, de Oliveira Nebó JF, Ribeiro RV andrade LM, Peixoto Júnior RF, Lembke CG, et al. Leaf transcriptome profiling of contrasting sugarcane genotypes for drought tolerance under field conditions. Sci Rep. 2022;12(1):9153. https://doi.org/10.1038/s41598-022-13158-5
  48. 48. Ali E, Iqbal A, Hussain S, Shah JM, Said F, Imtiaz M. Selection criteria to assess drought stress tolerance in wheat genotypes using physiological and biochemical parameters. Biosci Biotechnol Res Asia. 2019;16(4):751-62. https://doi.org/10.13005/bbra/2791
  49. 49. Raza MAS, Zaheer MS, Saleem MF, Khan IH, Ahmad S, Iqbal R. Drought ameliorating effect of exogenous applied cytokinin in wheat. Pak J Agric Sci. 2020;57(3).

Downloads

Download data is not yet available.