Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Inhibitory activity of an ethanolic extract from Azadirachta indica (Neem) on Fusarium sp.

DOI
https://doi.org/10.14719/pst.9441
Submitted
15 May 2025
Published
11-09-2025 — Updated on 06-10-2025
Versions

Abstract

The intensive use of synthetic fungicides for the control of Fusarium has raised concerns regarding environmental impact and pathogen resistance. As a sustainable alternative, plant-derived extracts are gaining attention due to their bioactive properties. The objective of this research was to identify the mineral and phytochemical composition of an ethanolic extract from Azadirachta indica and to evaluate its in vitro fungicidal activity against Fusarium sp. The extract was obtained using ultrasound/microwave-assisted extraction with 70 % ethanol. Phytochemical profiling was conducted through high-performance liquid chromatography (HPLC) and Fourier-transform infrared spectroscopy (FTIR), while mineral content was assessed by X-ray fluorescence (XRF). The antifungal effect was evaluated using the poisoned medium technique, with extract concentrations of 0 (control), 1, 2, 3, 4 and 5 mL/200 mL of medium. Mycelial growth inhibition and conidia production were recorded. Data were analyzed using ANOVA (analysis of variance) and Tukey’s test (p = 0.05). Potassium was the predominant mineral (4 %) and eight major phytochemicals were identified, including caffeic acid 4-O-glucoside, (+)-catechin, secoisolariciresinol, quercetin 3-O-xylosyl-glucuronide, quercetin 3-O-glucoside, caffeoyl glucose, p-coumaric acid 4-O-glucoside and pcoumaroyl glucose. Extract concentrations between 2 and 5 mL/200 mL reduced mycelial growth by up to 35 %, while doses of 2 and 5 mL/200 mL treatments significantly reduced conidia count to 173500 and 155500, respectively. These results suggest that A. indica extract exhibits fungicidal properties against Fusarium sp., highlighting its potential as a natural alternative to synthetic fungicides.

References

  1. 1. Wylie MR, Merrell DS. The antimicrobial potential of the neem tree Azadirachta indica. Front Pharmacol. 2022;13:1-16. https://doi.org/10.3389/fphar.2022.891535
  2. 2. Uzzaman S. Pharmacological activities of neem (Azadirachta indica): A review. Int J Pharmacogn. Life Sci. 2020;1:38-41. https://doi.org/10.33545/27072827.2020.v1.i1a.8
  3. 3. Rahmani A, Almatroudi A, Alrumaihi F, Khan A. Pharmacological and therapeutic potential of neem (Azadirachta indica). Phcog Rev. 2018;12:250-55. https://doi.org/10.4103/phrev.phrev_8_18
  4. 4. Ujah II, Nsude CA, Ani ON, Alozieuwa UB, Okpako IO, Okwor AE. Phytochemicals of neem plant (Azadirachta indica) explains its use in traditional medicine and pest control. GSC Biol Pharm Sci. 202;14:165-71. https://doi.org/10.30574/gscbps.2021.14.2.0394
  5. 5. Agbo BE, Nta AI, Ajaba MO. Bio-pesticidal properties of neem (Azadirachta indica). Adv Trends Agric Sci. 2019;1:17-26. https://doi.org/10.9734/bpi/atias/v1
  6. 6. Sharma AB, Kumarand A, Sidhu A. Relative performance of fungicides and crude leaf extract of Azadirachta indica against leaf blight of onion. Indian Phytopathol. 2022;75:1085-93. https://doi.org/10.1007/s42360-022-00539-z
  7. 7. Biney EE, Nkoom M, Darkwah WK, Puplampu JB. High performance liquid chromatography analysis and antioxidant activities of extract of Azadirachta indica (neem) leaves. Pharmacog Res. 2021;12:29-34. https://doi.org/10.4103/pr.pr_14_19
  8. 8. Ali J, Hussain A, Abbas J. In vitro control of post-harvest fruits rot pathogenic fungi using Azadirachta indica (neem) seeds and leaves extracts. Bull Biol Allied Sci Res. 2025;1:1-9. https://doi.org/10.54112/bbasr.v2025i1.102
  9. 9. Toka AN, Ngatsi PZ, Dida SLL, Tayo PMT, Kuate NWT, Boli H, et al. Phytochemical analysis and antifungal activity of Azadirachta indica and Balanites aegyptiaca seed extracts against Fusarium oxysporum isolate on tomatoes. J Glob Innov Agric Sci. 2023;11:293-304. https://doi.org/10.22194/JGIAS/23.1159
  10. 10. Oladipo OG, Ogunkanbi DA, Ayo-Lawal RA. Assessing the efficacy of Azadirachta indica seed extract on Fusarium oxysporum. West Afr J Appl Ecol. 2015;23:73-83.
  11. 11. Hernández ADA, Pineda J, Noriega-Córdova HW. Isolation and identification of Fusarium oxysporum obtained from producing areas of "chili pepper" Capsicum annumm L. (Solanaceae) in the district of Barranca, Peru. Arnaldoa. 2019;26:689-98. https://doi.org/10.22497/arnaldoa.262.26211
  12. 12. Espinoza-Ahumada CA, Gallegos-Morales G, Hernández-Castillo FD, Ochoa-Fuentes YM, Cepeda-Siller M, Castillo-Reyes F. Antagonistas microbianos a Fusarium spp., como agente causal de pudrición de raíces y tallo en melón. Ecosistemas Y Recursos Agropecuarios. 2019;6:45-55. https://doi.org/10.19136/era.a6n16.1843
  13. 13. Shabeer S, Tahira R, Jamal A. Fusarium spp. mycotoxin production, diseases and their management: An overview. Pak J Agric Res. 2021;34:278-93. https://dx.doi.org/10.17582/journal.pjar/2021/34.2.278.293
  14. 14. Estrada-Gil L, Contreras-Esquivel JC, Flores-Gallegos C, Zugasti-Cruz A, Govea-Salas M, Mata-Gómez MA, et al. Recovery of bioactive ellagitannins by ultrasound/microwave-assisted extraction from Mexican Rambutan Peel (Nephelium lappaceum L.). Molecules 2022;27:1-15. https://doi.org/10.3390/molecules27051592
  15. 15. Kursa W, Jamiołkowska A, Wyrostek J, Kowalski R. Antifungal effect of plant extracts on the growth of the cereal pathogen Fusarium spp.-An in vitro study. Agronomy. 2022;12:1-18. https://doi.org/10.3390/agronomy12123204
  16. 16. Cerda-Cejudo ND, Buenrostro-Figueroa JJ, Sepúlveda L, Torres-Leon C, Chávez-González ML, Ascacio-Valdés JA, et al. Recovery of ellagic acid from Mexican rambutan peel by solid-state fermentation-assisted extraction. FBP. 2022;134:86-94. https://doi.org/10.1016/j.fbp.2022.05.001
  17. 17. Barnett HL, Hunter BB. Illustrated genera of imperfect fungi. USA: American Phytopathological Society; 1998.
  18. 18. Xoca-Orozco LA, Cortez-Fonseca K, Luna LC, Hernández-Mendoza G, Flores-Sierra JJ, Chacón-López MA, et al. Inhibición in vitro de hongos fitopatógenos utilizando extractos de muérdago mexicano (Psittacanthus calyculatus). Ecosistemas Y Recursos Agropecuarios 2022;9:1-12. https://doi.org/10.19136/era.a9n3.3431
  19. 19. Ruiz S, Coy P, Pellicer M, Ramírez A. Manual de Prácticas de Fisiología Animal y Veterinaria. España: Universidad de Murcia; 1995.
  20. 20. Wang Z, Yang J, Sun M, Pan Y, Huang L. Involvement of the transporter CgTrk1 in potassium uptake, invasive growth, and full virulence in Colletotrichum gloeosporioides. Forests. 2024;15:1-11. https://doi.org/10.3390/f15061044
  21. 21. MacGilvary NJ, Kevorkian YL, Tan S. Potassium response and homeostasis in Mycobacterium tuberculosis modulates environmental adaptation and is important for host colonization. PLoS Pathog. 2019;15:1-23. https://doi.org/10.1371/journal.ppat.1007591
  22. 22. Sasanuma I, Suzuki T. Effect of calcium on cell-wall degrading enzymes of Botrytis cinerea. Biosci Biotechnol Biochem. 2016;80:1730-36. https://doi.org/10.1080/09168451.2016.1146064
  23. 23. Aljboori QHA, Saadoon SM. Efficacy of sulfur with benomyl for reducing effect fungi of Fusarium solani infecting rice. Sarhad J Agric. 2024;40:1408-1413. https://dx.doi.org/10.17582/journal.sja/2024/40.4.1408.1413
  24. 24. Davidson PM, Juneja VK. Antimicrobial agents. In: Branen AL, Davidson PM, Salminen S, editors. Food Additives. New York: Marcel Dekker; 1990. p. 83-137.
  25. 25. Gould GW, Russel NJ. Sulfite. In: Russel NJ, Gould GW, editors. Food Preservatives. United Kingdom: Blackie Publishers; 1991. p. 72-88.
  26. 26. Hussain S, Khan M, Jeque TMM, Mumtaz MZ, Chohan TA, Shamim S, et al. Zinc essentiality, toxicity, and its bacterial bioremediation: A comprehensive insight. Front Microbiol. 2023;13:1-15. https://doi.org/10.3389/fmicb.2022.900740
  27. 27. Sazanova KV, Zelenskaya MS, Korneev AV, Bakhvalova, EV, Vlasov DY, Frank-Kamenetskaya OV. Effect of fungal metabolism on Zn minerals formation: The case of Aspergillus niger and Penicillium chrysogenum. Crystals. 2025;15:1-19. https://doi.org/10.3390/cryst15020118
  28. 28. Grassi С, Cecchi S, Baldi A, Zanchi CA, Orlandini S, Pardini A, et al. Crop suitability assessment in remediation of Zn contaminated soil. Chemosphere. 2020;246:1-4. https://doi.org/10.1016/j.chemosphere.2019.125706
  29. 29. Hernandez-Trejo A, Rodríguez-Herrera R, Sáenz-Galindo A, López-Badillo, CM, Flores-Gallegos AC, Ascacio-Valdez JA, et al. Insecticidal capacity of polyphenolic seed compounds from neem (Azadirachta indica) on Spodoptera frugiperda (J. E. Smith) larvae. J Environ Sci Health B. 2021;56:1023-30. https://doi.org/10.1080/03601234.2021.2004853
  30. 30. Venmathi MBA, Josmeh D, Tan JK, Yong YS, Shah MD. Efficacy of the aqueous extract of Azadirachta indica against the marine parasitic leech and its phytochemical profiling. Molecules. 2021;25:1-10. https://doi.org/10.3390/molecules26071908
  31. 31. Gautier C, Pinson-Gadais L, Verdal-Bonnin MN, Ducos C, Tremblay L, Chéreau S, et al. Investigating the efficiency of hydroxycinnamic acids to inhibit the production of enniatins by Fusarium avenaceum and modulate the expression of enniatins biosynthetic genes. Toxins. 2020;12:1-17. https://doi.org/10.3390/toxins12120735
  32. 32. Fajardo J, Nelson R, Mitchell-Lawson G, Apea-Bah FB, Beta T, Jayathissa UA, et al. Interactions between Fusarium graminearum and hydroxycinnamic acids from cereal crops. Can J Plant Pathol. 2024;47:1-18. https://doi.org/10.1080/07060661.2024.2435954
  33. 33. Barral B, Chillet M, Minier J, Léchaudel M, Schorr-Galindo S. Evaluating the response to Fusarium ananatum inoculation and antifungal activity of phenolic acids in pineapple. Fungal Biol. 2017;121:1045-53. https://doi.org/10.1016/j.funbio.2017.09.002
  34. 34. Gauthier L, Bonnin-Verdal MN, Marchegay G, Pinson-Gadais L, Ducos C, Richard-Forget F, et al. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. Int J Food Microbiol. 2016;221:61-68. https://doi.org/10.1016/j.ijfoodmicro.2016.01.005
  35. 35. Li S, Pi J, Zhu H, Yang L, Zhang X, Ding W. Caffeic acid in tobacco root exudate defends tobacco plants from infection by Ralstonia solanacearum. Front Plant Sci. 2021;12:1-14. https://doi.org/10.3389/fpls.2021.690586
  36. 36. García-Rodríguez Y, Bravo-Monzón AE, Espinosa-García FJ. Growth response of maize seed-borne fungi to cereal phenolic acid mixtures. Biochem Syst Ecol. 2021;98:1-7. https://doi.org/10.1016/j.bse.2021.104321
  37. 37. Kulik T, Buśko M, Pszczółkowska A, Perkowski J, Okorski A. Plant lignans inhibit growth and trichothecene biosynthesis in Fusarium graminearum. Lett Appl Microbiol. 2014;59:99-107. https://doi.org/10.1111/lam.12250
  38. 38. Wu HB, Liu TT, Zhang ZX, Wang WS, Zhu WW, Li LF, et al. Leaves of Magnolia liliflora Desr. as a high-potential by-product: Lignans composition, antioxidant, anti-inflammatory, anti-phytopathogenic fungal and phytotoxic activities. Ind Crop Prod. 2018;125:416-424. https://doi.org/10.1016/j.indcrop.2018.09.023
  39. 39. Oleszek M, Pecio Ł, Kozachok S, Lachowska-Filipiuk Ż, Oszust K, Frąc M. Phytochemicals of apple pomace as prospect bio-fungicide agents against mycotoxigenic fungal species-In vitro experiments. Toxins. 2019;11:1-13. https://doi.org/10.3390/toxins11060361
  40. 40. Yamaguchi MU, Garcia FP, Cortez DAG, Ueda-Nakamura T, Filho BPD, Nakamura CV. Antifungal effects of ellagitannin isolated from leaves of Ocotea odorifera (Lauraceae). Antonie van Leeuwenhoek. 2011;99:507-14. https://doi.org/10.1007/s10482-010-9516-3
  41. 41. Gurav NV, Gade RM, Choudhari RJ. Bioassay of phytochemicals isolated from chloroform extracts of Azadirachta indica leaves. Int J Plant Soil Sci. 2023;35:994-1007. https://doi.org/10.9734/ijpss/2023/v35i193636
  42. 42. Li Q, Zhu X, Xie Y, Liang J. Antifungal properties and mechanisms of three volatile aldehydes (octanal, nonanal and decanal) on Aspergillus flavus. Grain Oil Sci Technol. 2021;4:131-40. https://doi.org/10.1016/j.gaost.2021.07.002
  43. 43. Aboody MSA, Mickymaray S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics. 2020;9:1-42. https://doi.org/10.3390/antibiotics9020045
  44. 44. Nwanekezie MN, Ndive JN, Ogbonna IL, Sebe GO. Comprehensive physicochemical profiling and characterization of neem plant leaf extracts: Insights for pharmaceutical & biomedical applications. Adv Chem Engin Sci. 2023;13:382-99. https://doi.org/10.4236/aces.2023.134026
  45. 45. Hy UK, Ibrahim YKE, Tytler BA. Anti-dermatophytic activity of hexane extracts of Azadirachta indica A. Juss. Afr J Microbiol Res. 2019;13:421-29. http://dx.doi.org/10.5897/AJMR2018.8819
  46. 46. Rabi’atu M, Muhammad S, Shehu H, Muhammad AS. In vitro activity of the ethanolic extracts of Azadirachta indica on the management of some fungal diseases affecting carrots in Sokoto state, Nigeria. Caliphate J Sci Technol. 2023;5(2):225-31. https://dx.doi.org/10.4314/cajost.v5i2.18
  47. 47. Baba AI, Isa A. Control of fungal pathogens associated with post-harvest rot agents of groundnut using plant extracts. Afr J Agric Sci Food Res. 2024;14:92-101. https://doi.org/10.62154/hzzc5a26
  48. 48. Ali J, Abbas J. Comparative bioactive compounds and antifungal potential evaluation of Mentha longifolia (L.) Hudson (Lamiaceae) extracts against plant pathogenic fungi. Int J Environ Sci Technol. 2023;15:48-57. http://dx.doi.org/10.4314/ijest.v15i2.5
  49. 49. Ali J, Hussain A, Siddiqueand M, Rahman ZU. Evaluation of some bioactive compounds of Azadirachta indica extracts and its application as safe fungicide against different plant pathogenic fungi. Int J Engin Sci Technol. 2024;16:44-54. http://dx.doi.org/10.4314/ijest.v16i1.5
  50. 50. Elsherbiny EA, Safwat NA, Elaasser MM. Fungitoxicity of organic extracts of Ocimum basilicum on growth and morphogenesis of Bipolaris species (teleomorph Cochliobolus). J Appl Microbiol. 2017;123:841-52. http://dx.doi.org/10.1111/jam.13543

Downloads

Download data is not yet available.