This is an outdated version published on 21-10-2025. Read the
most recent version.
Research communications
Early Access
Overcoming physical dormancy: Optimizing seed germination in Helianthemum and Cistus species for desert truffle mycorrhizal seedling production
Department of Plant Protection, College of Agriculture, Razi University, Kermanshah 6715685438, Iran
Department of Plant Protection, College of Agriculture, Razi University, Kermanshah 6715685438, Iran
Abstract
Seed germination is a critical stage in the plant reproductive cycle, significantly influencing species fitness. Variations in germination rates are often considered adaptations to specific ecological conditions. Understanding this process is essential for developing effective conservation strategies, particularly for producing mycorrhizal seedlings in greenhouse settings. A key challenge in desert truffle cultivation is the low germination rate of seeds from their host plants, which impedes the establishment of mycorrhizal plants under greenhouse conditions. This study investigates the germination behaviour of four Helianthemum species (H. lippii, H. salicifolium, H. ledifolium, H. almeriense) and two Cistus species (C. ladanifer, C. laurifolius) under controlled conditions. Three pre-sowing treatments, manual scarification, soaking intact seeds in distilled water for 24 hr at ambient temperature and sulphuric acid treatment were applied. Among all Helianthemum and Cistus species tested, manual scarification yielded the highest germination percentages. While other pre-sowing treatments promoted germination in some species, none matched the efficacy of manual scarification. The consistently high germination rates following mechanical disruption of the seed coat suggest that dormancy is primarily governed by seed coat impermeability. Physical dormancy, resulting from an impermeable seed coat, appears to be the primary cause of low germination in untreated seeds of the studied Helianthemum and Cistus species.
References
- 1. Navarro L, Guitian J. Seed germination and seedling survival of two threatened endemic species of the northwest Iberian Peninsula. Biol Conserv. 2003;109:313-20. https://doi.org/10.1016/S0006-3207(02)00151-9
- 2. López IS, González FV, Luis JC. Micropropagation of Helianthemum inaguae, a rare and endangered species from the Canary Islands. Bot Macaronés. 2006;26:55-64.
- 3. Thanos CA, Georghiou K, Kadis C, Pantazi C. Cistaceae: A plant family with hard seeds. Isr J Plant Sci. 1992;41(4-6):251-63.
- 4. Baskin CC, Baskin JM. Seeds: Ecology, biogeography, and evolution of dormancy and germination. 2nd ed. Academic Press; 2014. https://doi.org/10.1023/a:1011465920842
- 5. Van Staden J, Manning JC, Kelly KM. Legume seeds: The structure-function equation. In: Stirton CH, Zarucchi JL, editors. Advances in legume biology. St Louis: Missouri Botanical Garden; 1989. p. 417-50.
- 6. Li C, Ni P, Francki M, Hunter A, Zhang Y, Schibeci D, et al. Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct Integr Genomics. 2004;4(2):84-93. https://doi.org/10.1007/s10142-004-0104-3
- 7. Eriksson O, Ehrlén J. Seed and microsite limitation of recruitment in plant populations. Oecologia. 1992;91:360–64. https://doi.org/10.1007/BF00317624
- 8. Zobel M, Vander Maarel E, Dupré C. Species pool: The concept, its determination and significance for community restoration. Appl Veg Sci. 1998;1:55–66. https://doi.org/10.2307/1479085
- 9. Turnbull LA, Crawley MJ, Rees M. Are plant populations seed-limited? A review of seed sowing experiments. Oikos. 2000;88:225–38. https://doi.org/10.1034/j.1600-0706.2000.880201.x
- 10. Jamali S, Banihashemi Z. Hosts and distribution of desert truffles in Iran, based on morphological and molecular criteria. J Agric Sci Technol. 2012;14(6):1379-96. http://jast.modares.ac.ir/article-23-2376-en.html
- 11. Jamali S, Banihashemi Z. Species-specific ITS primers for the identification of Picoa juniperi and Picoa lefebvrei and using nested-PCR for detection of P. juniperi in planta. Mol Biol Rep. 2013;40(10):5701-12. https://doi.org/10.1007/s11033-013-2672-6
- 12. Gutiérrez A, Morte A, Honrubia M. Morphological characterization of the mycorrhiza formed by Helianthemum almeriense Pau with Terfezia claveryi Chatin and Picoa lefebvrei (Pat.) Maire. Mycorrhiza. 2003;13(6):299-307. https://doi.org/10.1007/s00572-003-0236-7
- 13. Slama A, Fortas Z, Boudabous A, Neffati M. Cultivation of an edible desert truffle (Terfezia boudieri Chatin). Afr J Microbiol Res. 2010;4(22):2350-56.
- 14. Zitouni-Haouar FEH, Fortas Z, Chevalier G. Morphological characterization of mycorrhizae formed between three Terfezia species (desert truffles) and several Cistaceae and Aleppo pine. Mycorrhiza. 2014;24:397-403. https://doi.org/10.1007/s00572-013-0550-7
- 15. Giovannetti G, Roth-Bejerano N, Zanini E, Kagan-Zur V. Truffles and their cultivation. In: Janick J, editor. Horticultural reviews. New York: John Wiley & Sons Ltd; 2010. p. 71-107. https://doi.org/10.1002/9780470650561.ch3
- 16. Morte A, Andrino A, Honrubia M, Navarro-Ródenas A. Terfezia cultivation in arid and semiarid soils. In: Zambonelli A, Bonito G, editors. Edible ectomycorrhizal mushrooms. Soil Biol. Springer, Berlin, Heidelberg; 2012. p. 34.
- 17. Díez J, Manjón JL, Martin F. Molecular phylogeny of the mycorrhizal desert truffles (Terfezia and Tirmania), host specificity and edaphic tolerance. Mycologia. 2002;94(2):247-59. https://doi.org/10.1080/15572536.2003.11833230
- 18. Comandini O, Contu M, Rinaldi AC. An overview of Cistus ectomycorrhizal fungi. Mycorrhiza. 2006;16(6):381-95. https://doi.org/10.1007/s00572-006-0047-8
- 19. Castaño C, Suarez-Vidal E, Zas R, Bonet JA, Oliva J, Sampedro L. Ectomycorrhizal fungi with hydrophobic mycelia and rhizomorphs dominate in young pine trees surviving experimental drought stress. Soil Biol Biochem. 20231;178:108932. https://doi.org/10.1016/j.soilbio.2022.108932
- 20. Valbuena L, Tarrega R, Luis E. Influence of heat on seed germination of Cistus laurifolius and Cistus ladanifer. Int J Wildland Fire. 1992;2(1):15-20. https://doi.org/10.1071/wf9920015
- 21. Escudero A, Albert MJ, Pita JM, Pérez-García F. Inhibitory effects of Artemisia herba-alba on the germination of the gypsophyte Helianthemum squamatum. Plant Ecol. 2000;148(1):71-80. https://doi.org/10.1023/a:1009848215019
- 22. Gutterman Y, Agami M. A comparative germination study of seeds of Helianthemum vesicarium Boiss. and H. ventosum Boiss., perennial desert shrub species inhabiting two different neighbouring habitats in the Negev desert highlands, Israel. J Arid Environ. 1987;12(3):215-21. https://doi.org/10.1016/s0140-1963(18)31165-0
- 23. Pérez-García F, González-Benito ME. Seed germination of five Helianthemum species: Effect of temperature and presowing treatments. J Arid Environ. 2006;65(4):688-93. https://doi.org/10.1016/j.jaridenv.2005.10.008
- 24. Wiese AN, Binning LK. Calculating the threshold temperature of development for weeds. Weed Sci. 1987;35:17. https://doi.org/10.1017/s0043174500079017
- 25. Fortas Z, Chevalier G. Effet des conditions de culture sur la mycorhization de l’Helianthemum guttatum par trois espèces de terfez des genres Terfezia et Tirmania d'Algérie. Can J Bot. 1992;70:2453-60. https://doi.org/10.1139/b92-303
- 26. Jamali S. Desert truffles. 1st ed. Kermanshah, Iran: Razi University Press; 2019.
- 27. Doussi MA, Thanos CA. Ecophysiology of seed germination in Mediterranean geophytes.1. Muscari spp. Seed Sci Res. 2002;12(3):193-201. https://doi.org/10.1079/ssr2002111
- 28. Bell DT, Plummer JA, Taylor SK. Seed germination ecology in southwestern Australia. Bot Rev. 1993;59(1):24-73. https://doi.org/10.1007/bf02856612
Downloads
Download data is not yet available.