Skip to main navigation menu Skip to main content Skip to site footer

Research communications

Early Access

Overcoming physical dormancy: Optimizing seed germination in Helianthemum and Cistus species for desert truffle mycorrhizal seedling production

DOI
https://doi.org/10.14719/pst.9556
Submitted
21 May 2025
Published
21-10-2025
Versions

Abstract

Seed germination is a critical stage in the plant reproductive cycle, significantly influencing species fitness. Variations in germination rates are often considered adaptations to specific ecological conditions. Understanding this process is essential for developing effective conservation strategies, particularly for producing mycorrhizal seedlings in greenhouse settings. A key challenge in desert truffle cultivation is the low germination rate of seeds from their host plants, which impedes the establishment of mycorrhizal plants under greenhouse conditions. This study investigates the germination behaviour of four Helianthemum species (H. lippii, H. salicifolium, H. ledifolium, H. almeriense) and two Cistus species (C. ladanifer, C. laurifolius) under controlled conditions. Three pre-sowing treatments, manual scarification, soaking intact seeds in distilled water for 24 hr at ambient temperature and sulphuric acid treatment were applied. Among all Helianthemum and Cistus species tested, manual scarification yielded the highest germination percentages. While other pre-sowing treatments promoted germination in some species, none matched the efficacy of manual scarification. The consistently high germination rates following mechanical disruption of the seed coat suggest that dormancy is primarily governed by seed coat impermeability. Physical dormancy, resulting from an impermeable seed coat, appears to be the primary cause of low germination in untreated seeds of the studied Helianthemum and Cistus species.

References

  1. 1. Navarro L, Guitian J. Seed germination and seedling survival of two threatened endemic species of the northwest Iberian Peninsula. Biol Conserv. 2003;109:313-20. https://doi.org/10.1016/S0006-3207(02)00151-9
  2. 2. López IS, González FV, Luis JC. Micropropagation of Helianthemum inaguae, a rare and endangered species from the Canary Islands. Bot Macaronés. 2006;26:55-64.
  3. 3. Thanos CA, Georghiou K, Kadis C, Pantazi C. Cistaceae: A plant family with hard seeds. Isr J Plant Sci. 1992;41(4-6):251-63.
  4. 4. Baskin CC, Baskin JM. Seeds: Ecology, biogeography, and evolution of dormancy and germination. 2nd ed. Academic Press; 2014. https://doi.org/10.1023/a:1011465920842
  5. 5. Van Staden J, Manning JC, Kelly KM. Legume seeds: The structure-function equation. In: Stirton CH, Zarucchi JL, editors. Advances in legume biology. St Louis: Missouri Botanical Garden; 1989. p. 417-50.
  6. 6. Li C, Ni P, Francki M, Hunter A, Zhang Y, Schibeci D, et al. Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct Integr Genomics. 2004;4(2):84-93. https://doi.org/10.1007/s10142-004-0104-3
  7. 7. Eriksson O, Ehrlén J. Seed and microsite limitation of recruitment in plant populations. Oecologia. 1992;91:360–64. https://doi.org/10.1007/BF00317624
  8. 8. Zobel M, Vander Maarel E, Dupré C. Species pool: The concept, its determination and significance for community restoration. Appl Veg Sci. 1998;1:55–66. https://doi.org/10.2307/1479085
  9. 9. Turnbull LA, Crawley MJ, Rees M. Are plant populations seed-limited? A review of seed sowing experiments. Oikos. 2000;88:225–38. https://doi.org/10.1034/j.1600-0706.2000.880201.x
  10. 10. Jamali S, Banihashemi Z. Hosts and distribution of desert truffles in Iran, based on morphological and molecular criteria. J Agric Sci Technol. 2012;14(6):1379-96. http://jast.modares.ac.ir/article-23-2376-en.html
  11. 11. Jamali S, Banihashemi Z. Species-specific ITS primers for the identification of Picoa juniperi and Picoa lefebvrei and using nested-PCR for detection of P. juniperi in planta. Mol Biol Rep. 2013;40(10):5701-12. https://doi.org/10.1007/s11033-013-2672-6
  12. 12. Gutiérrez A, Morte A, Honrubia M. Morphological characterization of the mycorrhiza formed by Helianthemum almeriense Pau with Terfezia claveryi Chatin and Picoa lefebvrei (Pat.) Maire. Mycorrhiza. 2003;13(6):299-307. https://doi.org/10.1007/s00572-003-0236-7
  13. 13. Slama A, Fortas Z, Boudabous A, Neffati M. Cultivation of an edible desert truffle (Terfezia boudieri Chatin). Afr J Microbiol Res. 2010;4(22):2350-56.
  14. 14. Zitouni-Haouar FEH, Fortas Z, Chevalier G. Morphological characterization of mycorrhizae formed between three Terfezia species (desert truffles) and several Cistaceae and Aleppo pine. Mycorrhiza. 2014;24:397-403. https://doi.org/10.1007/s00572-013-0550-7
  15. 15. Giovannetti G, Roth-Bejerano N, Zanini E, Kagan-Zur V. Truffles and their cultivation. In: Janick J, editor. Horticultural reviews. New York: John Wiley & Sons Ltd; 2010. p. 71-107. https://doi.org/10.1002/9780470650561.ch3
  16. 16. Morte A, Andrino A, Honrubia M, Navarro-Ródenas A. Terfezia cultivation in arid and semiarid soils. In: Zambonelli A, Bonito G, editors. Edible ectomycorrhizal mushrooms. Soil Biol. Springer, Berlin, Heidelberg; 2012. p. 34.
  17. 17. Díez J, Manjón JL, Martin F. Molecular phylogeny of the mycorrhizal desert truffles (Terfezia and Tirmania), host specificity and edaphic tolerance. Mycologia. 2002;94(2):247-59. https://doi.org/10.1080/15572536.2003.11833230
  18. 18. Comandini O, Contu M, Rinaldi AC. An overview of Cistus ectomycorrhizal fungi. Mycorrhiza. 2006;16(6):381-95. https://doi.org/10.1007/s00572-006-0047-8
  19. 19. Castaño C, Suarez-Vidal E, Zas R, Bonet JA, Oliva J, Sampedro L. Ectomycorrhizal fungi with hydrophobic mycelia and rhizomorphs dominate in young pine trees surviving experimental drought stress. Soil Biol Biochem. 20231;178:108932. https://doi.org/10.1016/j.soilbio.2022.108932
  20. 20. Valbuena L, Tarrega R, Luis E. Influence of heat on seed germination of Cistus laurifolius and Cistus ladanifer. Int J Wildland Fire. 1992;2(1):15-20. https://doi.org/10.1071/wf9920015
  21. 21. Escudero A, Albert MJ, Pita JM, Pérez-García F. Inhibitory effects of Artemisia herba-alba on the germination of the gypsophyte Helianthemum squamatum. Plant Ecol. 2000;148(1):71-80. https://doi.org/10.1023/a:1009848215019
  22. 22. Gutterman Y, Agami M. A comparative germination study of seeds of Helianthemum vesicarium Boiss. and H. ventosum Boiss., perennial desert shrub species inhabiting two different neighbouring habitats in the Negev desert highlands, Israel. J Arid Environ. 1987;12(3):215-21. https://doi.org/10.1016/s0140-1963(18)31165-0
  23. 23. Pérez-García F, González-Benito ME. Seed germination of five Helianthemum species: Effect of temperature and presowing treatments. J Arid Environ. 2006;65(4):688-93. https://doi.org/10.1016/j.jaridenv.2005.10.008
  24. 24. Wiese AN, Binning LK. Calculating the threshold temperature of development for weeds. Weed Sci. 1987;35:17. https://doi.org/10.1017/s0043174500079017
  25. 25. Fortas Z, Chevalier G. Effet des conditions de culture sur la mycorhization de l’Helianthemum guttatum par trois espèces de terfez des genres Terfezia et Tirmania d'Algérie. Can J Bot. 1992;70:2453-60. https://doi.org/10.1139/b92-303
  26. 26. Jamali S. Desert truffles. 1st ed. Kermanshah, Iran: Razi University Press; 2019.
  27. 27. Doussi MA, Thanos CA. Ecophysiology of seed germination in Mediterranean geophytes.1. Muscari spp. Seed Sci Res. 2002;12(3):193-201. https://doi.org/10.1079/ssr2002111
  28. 28. Bell DT, Plummer JA, Taylor SK. Seed germination ecology in southwestern Australia. Bot Rev. 1993;59(1):24-73. https://doi.org/10.1007/bf02856612

Downloads

Download data is not yet available.