Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

An in-silico study of garlic extract compounds targeting DNA gyrase in Staphylococcus aureus

DOI
https://doi.org/10.14719/pst.9621
Submitted
25 May 2025
Published
09-09-2025
Versions

Abstract

The study used in silico molecular docking and in vitro validation to assess the antibacterial efficacy of bioactive compounds derived from garlic (Allium sativum) against Staphylococcus aureus. With a binding energy of -7.4 kcal/mol, Allicin had the greatest binding affinity among the studied chemicals to DNA gyrase, creating three hydrogen bonds with residues Tyr122, Asp81 and Ala68. Mostly engaged in hydrophobic interactions, Ajoene followed with a binding energy of -7.0 kcal/mol. Comparatively to 24.0 ± 0.3 mm for ciprofloxacin, in vitro studies showed a concentration-dependent antibacterial activity with a maximal inhibition zone width of 20.0 ± 0.6 mm at 50 mg/mL extract concentration. Garlic extract's minimum inhibitory concentration (MIC) came out to be 25 mg/mL. At the highest measured dose, the extract also reduced 85 % of DNA gyrase activity, thereby approaching the 95 % inhibition threshold of ciprofloxacin. These findings imply that garlic extract-especially Allicin-has great potential as a natural antibacterial agent aiming at bacterial DNA replication machinery.

References

  1. 1. Lowy FD. Antimicrobial resistance: The example of Staphylococcus aureus. J Clin Invest. 2003;111(9):1265-73.
  2. 2. Foster TJ. Antibiotic resistance in Staphylococcus aureus: Current status and future prospects. FEMS Microbiol Rev. 2017;41(3):430–49.
  3. 3. Ventola CL. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm Ther. 2015;40(4):277–83.
  4. 4. Collin F, Karkare S, Maxwell A. Exploiting bacterial DNA gyrase as a drug target: Current state and perspectives. Appl Microbiol Biotechnol. 2011;92(3):479–97.
  5. 5. Ashley RE, Dittmore A, McPherson SA, Turnbough CL Jr, Neuman KC, Osheroff N. Activities of gyrase and topoisomerase IV on positively supercoiled DNA. Nucleic Acids Res. 2017;45(16):9611–24. https://doi.org/10.1093/nar/gkx660
  6. 6. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999;12(4):564–82.
  7. 7. Abreu AC, McBain AJ, Simões M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep. 2012;29(9):1007–21. https://doi.org/10.1039/c2np20035j
  8. 8. Ankri S, Mirelman D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999;1(2):125–9.
  9. 9. Martins N, Petropoulos S, Ferreira ICFR. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Trends Food Sci Technol. 2016;52:49–61. https://doi.org/10.1016/j.tifs.2016.03.005
  10. 10. Borlinghaus J, Albrecht F, Gruhlke MCH, Nwachukwu ID, Slusarenko AJ. Allicin: Chemistry and biological properties. Molecules. 2021;26(6):1505. https://doi.org/10.3390/molecules26061505
  11. 11. Sliwoski G, Kothiwale S, Meiler J, Lowe EW. Computational methods in drug discovery. Pharmacol Rev. 2014;66(1):334–95. https://doi.org/10.1124/pr.112.007336
  12. 12. Rai M, Pandit R, Gaikwad S, Kövics G. Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. J Food Sci Technol. 2016;53(9):3381–94. https://doi.org/10.1007/s13197-016-2335-2
  13. 13. Tyagi AK, Malik A. Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapor phase against food spoilage microorganisms. Food Chem. 2011;126(1):228–35. https://doi.org/10.1016/j.foodchem.2010.10.082
  14. 14. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. Wayne (PA): CLSI; 2020.
  15. 15. Ryu S, Park SH, Yeom YS, Lee S, Park H, Lee K, Choi Y. Antibacterial activity of garlic extracts against multidrug-resistant pathogens from poultry origin. J Anim Sci Technol. 2020;62(2):215–24. https://doi.org/10.5187/jast.2020.62.2.215
  16. 16. El-Saber Batiha G, Magdy Beshbishy A, Wasef LG, Elewa YH, Al-Sagan AA, Abd El-Hack ME, et al. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients. 2020;12(3):872. https://doi.org/10.3390/nu12030872
  17. 17. Miron T, Rabinkov A, Mirelman D, Wilchek M, Weiner L. The mode of action of allicin: Its ready permeability through phospholipid membranes may contribute to its biological activity. Biochim Biophys Acta. 2000;1463(1):20–30. https://doi.org/10.1016/S0005-2736(99)00228-6
  18. 18. Mukherjee PK, Rai S, Bhattacharyya S, Wahile A. Plant products as antimicrobial agents. Indian J Nat Prod Resour. 2005;4(1):25–31.
  19. 19. Zhai H, Zhang F, Gao S, Chen Y, Wang Y. Antibacterial activity and mechanism of garlic water extract against Staphylococcus aureus. Mol Med Rep. 2019;20(6):5105–11. https://doi.org/10.3892/mmr.2019.10716
  20. 20. Harun N, Mohamed S, Mohd Zainudin N, Abdul-Malek Z. Evaluation of antibacterial activity and cytotoxicity of allicin. Pharmacogn J. 2021;13(1):35–41. https://doi.org/10.5530/pj.2021.13.6
  21. 21. Goncagul G, Ayaz E. Antimicrobial effect of garlic (Allium sativum). Recent Pat Antiinfect Drug Discov. 2010;5(1):91–3. https://doi.org/10.2174/157489110790909563
  22. 22. Reiter J, Levina N, van der Linden M, Gruhlke MC, Slusarenko AJ. Staphylococcus aureus and Escherichia coli are susceptible to allicin released from garlic. Appl Environ Microbiol. 2017;83(19):e01564–17. https://doi.org/10.1128/AEM.01564-17
  23. 23. Salehi B, Zucca P, Orhan IE, Azzini E, Adetunji CO, Mohammed SA, et al. Allicin and health: A comprehensive review. Trends Food Sci Technol. 2019;86:502–16. https://doi.org/10.1016/j.tifs.2019.02.003
  24. 24. Ghabraie M, Vu KD, Tremblay F, Lacroix M. Antibacterial activity of essential oils against Escherichia coli and Staphylococcus aureus and their synergistic effects with nisin. J Food Prot. 2016;79(10):1775–81. https://doi.org/10.4315/0362-028X.JFP-16-080
  25. 25. Ultee A, Kets EP, Smid EJ. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol. 1999;65(10):4606–10.
  26. 26. Kyung KH. Antimicrobial properties of alliums and their active compounds. Crit Rev Food Sci Nutr. 2012;52(10):1032–47. https://doi.org/10.1080/10408398.2010.514260
  27. 27. Tsao SM, Yin MC. In vitro antimicrobial activity of four diallyl sulphides occurring naturally in garlic and Chinese leek oils. J Med Microbiol. 2001;50(7):646–9. https://doi.org/10.1099/0022-1317-50-7-646
  28. 28. Lanzotti V. The analysis of onion and garlic. J Chromatogr A. 2006;1112(1–2):3–22. https://doi.org/10.1016/j.chroma.2005.12.016
  29. 29. Iwalokun BA, Ogunledun A, Ogbolu DO, Bamiro SB, Jimi-Omojola J. In vitro antimicrobial properties of aqueous garlic extract against multidrug-resistant bacteria and Candida species from Nigeria. J Med Food. 2004;7(3):327–33. https://doi.org/10.1089/1096620041938623
  30. 30. Hussain AI, Anwar F, Sherazi STH, Przybylski R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008;108(3):986–95. https://doi.org/10.1016/j.foodchem.2007.12.010
  31. 31. Shang A, Cao SY, Xu XY, Gan RY, Tang GY, Corke H, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods. 2019;8(7):246. https://doi.org/10.3390/foods8070246
  32. 32. Gholami M, Golestani S, Ghasempour Z, Bahador N, Aghazadeh H. Antimicrobial activity of allicin against clinical isolates of Pseudomonas aeruginosa. Jundishapur J Microbiol. 2018;11(6):e63787. https://doi.org/10.5812/jjm.63787
  33. 33. Casella S, Leonardi M, Melai B, Fratini F, Pistelli L. The role of diallyl sulfides and dipropyl sulfides in the in vitro antimicrobial activity of garlic extracts. Phytother Res. 2013;27(3):402–6. https://doi.org/10.1002/ptr.4732

Downloads

Download data is not yet available.