Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Advancing herbal therapeutics through nanotechnology: Innovations in drug delivery and pharmacokinetic enhancement

DOI
https://doi.org/10.14719/pst.9646
Submitted
26 May 2025
Published
08-11-2025
Versions

Abstract

Herbal medicine has long been integral to global healthcare systems due to its therapeutic versatility and cultural significance. Nevertheless, its clinical utility is hampered by inherent limitations, such as low solubility and instability of numerous herbal bioactive. Nanotechnology has emerged as a modern approach to overcoming these challenges by improving botanical compounds’ solubility, stability and targeted delivery. The objective of this review article is to conduct a critical assessment of the application of nanotechnology to enhance the pharmacological properties of plant-derived therapeutics in herbal medicine. This review also includes an analysis of the bioavailability and site-specific delivery of herbal bioactive by examining advancements in Nano formulations, such as liposomes, polymeric nanoparticles, Nano emulsions and lipid-based carriers. Furthermore, the review discusses the obstacles to clinical adoption of nanotechnology, including regulatory issues, production scaling issues and the necessity for longer-term safety investigations. This discussion will be supportive to guarantee nanotechnology's safe and efficient incorporation into herbal medicine. Nanotechnology has noteworthy importance for herbal medicines, like, to improve solubility, pharmacological activity enhancement, bioavailability, stability enhancement and site-specific delivery of herbal bioactives. Nanotechnology's transformative potential for herbal medicine necessitates large-scale human trials and comparative nano-delivery system investigations and interdisciplinary collaboration.

References

  1. 1. Rates SM. Plants as source of drugs. Toxicon. 2001;39(5):603–13. https://doi.org/10.1016/S0041-0101(00)00154-9
  2. 2. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014;10(4):177. https://doi.org/10.3389/fphar.2013.00177
  3. 3. World Health Organization. WHO global report on traditional and complementary medicine 2019. 2019:226.
  4. 4. Paroha S, Dewangan RP, Sahoo PK. Pharmaceutical technology for improving the bioavailability of natural products. Sustainable Agriculture Reviews. 2020;43:1–32. https://doi.org/10.1007/978-3-030-41838-0_1
  5. 5. Bolla L, Gangireddy NR, Bale DN, Nanjappan S. Significance of stability and pharmacokinetic issues in traditional medicine. Evidence Based Validation of Traditional Medicines. 2021:743–64. https://doi.org/10.1007/978-981-15-8127-4_36
  6. 6. Wang H, Chen Y, Wang L, Liu Q, Yang S, Wang C. Advancing herbal medicine: enhancing product quality and safety through robust quality control practices. Front Pharmacol. 2023;14:1265178. https://doi.org/10.3389/fphar.2023.1265178
  7. 7. Patra JK, Das G, Fraceto LF, Campos EV, Rodriguez-Torres MD, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. https://doi.org/10.1186/s12951-018-0392-8
  8. 8. Kesarwani K, Gupta R. Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed. 2013;3(4):253–66. https://doi.org/10.1016/S2221-1691(13)60060-X
  9. 9. Narwade VV, Game MD, Kadam SG. A review on nanotechnology in herbal medicine. Int J Pharm Sci. 2024;2(4):411–6.
  10. 10. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286. https://doi.org/10.3389/fphar.2015.00286
  11. 11. McClements DJ. Nanoemulsions versus microemulsions: terminology, differences and similarities. Soft Matter. 2012;8(6):1719–29. https://doi.org/10.1039/C2SM06903B
  12. 12. Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60(11):1307–15. https://doi.org/10.1016/j.addr.2008.03.016
  13. 13. Ju J, Rh M. Nanocrystal technology. Int J Nanomed. 2008;3:295.
  14. 14. Sharifi-Rad J, Rayess YE, Rizk AA, Sadaka C, Zgheib R, Zam W, et al. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles. Front Pharmacol. 2020;11:550909. https://doi.org/10.3389/fphar.2020.01021
  15. 15. El-Saadony MT, Yang T, Korma SA, Sitohy M, Abd El-Mageed TA, Selim S, et al. Impacts of turmeric and its principal bioactive curcumin on human health: a comprehensive review. Front Nutr. 2023;9:1040259. https://doi.org/10.3389/fnut.2022.1040259
  16. 16. Jeliński T, Przybyłek M, Cysewski P. Natural deep eutectic solvents as agents for improving solubility, stability and delivery of curcumin. Pharm Res. 2019;36(8):116. https://doi.org/10.1007/s11095-019-2643-2
  17. 17. Farhan M, Rizvi A. The pharmacological properties of red grape polyphenol resveratrol: clinical trials and obstacles in drug development. Nutrients. 2023;15(20):4486. https://doi.org/10.3390/nu15204486
  18. 18. Alsabeelah N, Kumar V. Formulation and optimization of quercetin nanoemulsion. J Cluster Sci. 2023;34(4):1893–906. https://doi.org/10.1007/s10876-022-02351-1
  19. 19. Guan F, Wang Q, Bao Y, Chao Y. Anti-rheumatic effect of quercetin and recent developments in nano formulation. RSC Adv. 2021;11(13):7280–93. https://doi.org/10.1039/D0RA08817J
  20. 20. Mahadev M, Nandini HS, Ramu R, Gowda DV, Almarhoon ZM, Al-Ghorbani M, et al. Fabrication and evaluation of quercetin nanoemulsion. Pharmaceuticals. 2022;15(1):70. https://doi.org/10.3390/ph15010070
  21. 21. Di Costanzo A, Angelico R. Formulation strategies for enhancing the bioavailability of silymarin: the state of the art. Molecules. 2019;24(11):2155. https://doi.org/10.3390/molecules24112155
  22. 22. Liang J, Liu Y, Liu J, Li Z, Fan Q, Jiang Z, et al. Chitosan-functionalized lipid-polymer hybrid nanoparticles for oral delivery of silymarin. J Nanobiotechnology. 2018;16(1):64. https://doi.org/10.1186/s12951-018-0391-9
  23. 23. Yang G, Zhao Y, Zhang Y, Dang B, Liu Y, Feng N. Enhanced oral bioavailability of silymarin using liposomes. Int J Nanomedicine. 2015:6633–44. https://doi.org/10.2147/IJN.S92665
  24. 24. Bakshi J, Mehra M, Grewal S, Dhingra D, Kumari S. Antimicrobial and anti-diabetic activity of berberine nanocomplexes. J Bioact Compat Polym. 2022;37(4):233–51. https://doi.org/10.1177/08839115221106700
  25. 25. Al-Obaidy SS, Greenway GM, Paunov VN. Dual-functionalised shellac nanocarriers for berberine. Nanoscale Adv. 2019;1(2):858–72. https://doi.org/10.1039/C8NA00121A
  26. 26. Alyasari NK, Almzaiel AJ. Pluronic F127 polymeric micelle as nanocarrier for berberine delivery. Indones J Chem. 2024;24(2):390–402. https://doi.org/10.22146/ijc.88109
  27. 27. Kumar S, Dilbaghi N, Saharan R, Bhanjana G. Nanotechnology as tool for enhancing solubility of poorly water-soluble drugs. Bionanoscience. 2012;2(4):227–50. https://doi.org/10.1007/s12668-012-0060-7
  28. 28. Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem. 2009;17(8):2950–62. https://doi.org/10.1016/j.bmc.2009.02.043
  29. 29. Schmidt EB, Elmose-Østerlund K, Ibsen B. Physical activity participation among immigrants and descendants in Denmark. BMC Public Health. 2025;25(1):345. https://doi.org/10.1186/s12889-025-21314-5
  30. 30. Mishra NK, Yadav K, Mohanty SR, Parmar AS, Yadav SK, Haldar C. Tinospora cordifolia silver nanoparticles attenuated lipopolysaccharide-induced testicular inflammation in golden hamster. Regen Eng Transl Med. 2025;11(2):434–48. https://doi.org/10.1007/s40883-024-00363-z
  31. 31. Patel P, Geed SR. Nanomaterial in modern drug delivery: future perspective. Biogenic Nanomaterials for Environmental Sustainability. 2024:319–51. https://doi.org/10.1007/978-3-031-45956-6_13
  32. 32. Jang GH, Kim YM, Kim DH, Shin JW, Yoon SY, Bae JW, et al. A chitosan/alginate coated nano-liposome to improve intestinal absorption of curcumin for oral administration. Food Science and Biotechnology. 2024;33(7):1707–14. https://doi.org/10.1007/s10068-023-01461-4
  33. 33. Xu X, Tian M, Deng L, Jiang H, Han J, Zhen C, et al. Structural degradation and uptake of resveratrol-encapsulated liposomes using an in vitro digestion combined with Caco-2 cell absorption model. Food Chemistry. 2023;403:133943. https://doi.org/10.1016/j.foodchem.2022.133943
  34. 34. Vijayakumar MR, Kosuru R, Vuddanda PR, Singh SK, Singh S. Trans resveratrol loaded DSPE PEG 2000 coated liposomes: evidence for prolonged systemic circulation and passive brain targeting. Journal of Drug Delivery Science and Technology. 2016;33:125–35. https://doi.org/10.1016/j.jddst.2016.02.009
  35. 35. Chopra H, Dey PS, Das D, Bhattacharya T, Shah M, Mubin S, et al. Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules. 2021;26(16):4998. https://doi.org/10.3390/molecules26164998
  36. 36. Arora D, Jaglan S. Therapeutic applications of resveratrol nanoformulations. Environmental Chemistry Letters. 2018;16(1):35–41. https://doi.org/10.1007/s10311-017-0660-0
  37. 37. Tabanelli R, Brogi S, Calderone V. Improving curcumin bioavailability: current strategies and future perspectives. Pharmaceutics. 2021;13(10):1715. https://doi.org/10.3390/pharmaceutics13101715
  38. 38. Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Research and Treatment. 2014;46(1):2–18. https://doi.org/10.4143/crt.2014.46.1.2
  39. 39. Alanazi AZ, Alqinyah M, Alhamed AS, Mohammed H, Raish M, Aljerian K, et al. Cardioprotective effects of liposomal resveratrol in diabetic rats: unveiling antioxidant and anti-inflammatory benefits. Redox Report. 2024;29(1):2416835. https://doi.org/10.1080/13510002.2024.2416835
  40. 40. Montagnier L. System and method for the detection and treatment of infection by a microbial agent associated with HIV infection. United States patent US 9,580,758. 2017.
  41. 41. Dixit N, Baboota S, Kohli K, Ahmad S, Ali J. Silymarin: a review of pharmacological aspects and bioavailability enhancement approaches. Indian Journal of Pharmacology. 2007;39(4):172–9. https://doi.org/10.4103/0253-7613.36534
  42. 42. Gupta SC, Kismali G, Aggarwal BB. Curcumin, a component of turmeric: from farm to pharmacy. Biofactors. 2013;39(1):2–13. https://doi.org/10.1002/biof.1079
  43. 43. de Albuquerque Mendes MK, dos Santos Oliveira CB, da Silva Medeiros CM, dos Santos LR, Lopes Júnior CA, et al. Challenges and strategies for bioavailability of curcumin. In: Curcumin and Neurodegenerative Diseases: From Traditional to Translational Medicines. 2024:21–37. https://doi.org/10.1007/978-981-99-7731-4_2
  44. 44. Fasinu PS, Bouic PJ, Rosenkranz B. An overview of the evidence and mechanisms of herb–drug interactions. Frontiers in Pharmacology. 2012;3:69. https://doi.org/10.3389/fphar.2012.00069
  45. 45. Yang P, Yuan C, Wang H, Han F, Liu Y, Wang L, et al. Stability of anthocyanins and their degradation products from cabernet sauvignon red wine under gastrointestinal pH and temperature conditions. Molecules. 2018;23(2):354. https://doi.org/10.3390/molecules23020354
  46. 46. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal. 2013;2013:162750. https://doi.org/10.1155/2013/162750
  47. 47. Chowdhury S, Nath D, Chanda Das SR, Kar K, Chakraborty P, Kapoor DU, et al. Nanotechnology based herbal drug delivery system: current insights and future prospects. Current Nanomedicine. 2024. https://doi.org/10.2174/0124681873349580241113081309
  48. 48. Dewi MK, Chaerunisaa AY, Muhaimin M, Joni IM. Improved activity of herbal medicines through nanotechnology. Nanomaterials. 2022;12(22):4073. https://doi.org/10.3390/nano12224073
  49. 49. Srinivasan N. Recent advances in herbal-nano formulation: a systematic review. Asian Journal of Biological and Life Sciences. 2023;12(1):23. https://doi.org/10.5530/ajbls.2023.12.4
  50. 50. Patel P, Shah J. Safety and toxicological considerations of nanomedicines: future directions. Current Clinical Pharmacology. 2017;12(2):73–82. https://doi.org/10.2174/1574884712666170509161252
  51. 51. Bonifácio BV, da Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. International Journal of Nanomedicine. 2014;1–5. https://doi.org/10.2147/IJN.S52634
  52. 52. European Medicines Agency. Guideline on good pharmacovigilance practices (GVP) Module VI – Collection, management and submission of reports of suspected adverse reactions to medicinal products. 2017.
  53. 53. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature Materials. 2013;12(11):991–1003. https://doi.org/10.1038/nmat3776
  54. 54. Zhao X, Bai J, Yang W. Stimuli-responsive nanocarriers for therapeutic applications in cancer. Cancer Biology and Medicine. 2021;18(2):319–35. https://doi.org/10.20892/j.issn.2095-3941.2020.0496
  55. 55. Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, et al. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging and theragnosis. Polymers. 2020;12(6):1397. https://doi.org/10.3390/polym12061397
  56. 56. Mao Y, Xie J, Yang F, Luo Y, Du J, Xiang H. Advances and prospects of precision nanomedicine in personalized tumor theranostics. Frontiers in Cell and Developmental Biology. 2024;12:1514399. https://doi.org/10.3389/fcell.2024.1514399
  57. 57. Majumder J, Minko T. Targeted nanotherapeutics for respiratory diseases: cancer, fibrosis and coronavirus. Advanced Therapeutics. 2021;4(2):2000203. https://doi.org/10.1002/adtp.202000203
  58. 58. Bhange M, Telange D. Convergence of nanotechnology and artificial intelligence in the fight against liver cancer: a comprehensive review. Discover Oncology. 2025;16(1):77. https://doi.org/10.1007/s12672-025-01821-y
  59. 59. Kapoor DU, Sharma JB, Gandhi SM, Prajapati BG, Thanawuth K, Limmatvapirat S, et al. AI-driven design and optimization of nanoparticle-based drug delivery systems. Science Engineering and Health Studies. 2024;24010003. https://doi.org/10.69598/sehs.18.24010003
  60. 60. Gao XJ, Ciura K, Ma Y, Mikolajczyk A, Jagiello K, Wan Y, et al. Toward the integration of machine learning and molecular modeling for designing drug delivery nanocarriers. Advanced Materials. 2024;36(45):2407793. https://doi.org/10.1002/adma.202407793
  61. 61. Spanakis M, Tzamali E, Tzedakis G, Koumpouzi C, Pediaditis M, Tsatsakis A, et al. Artificial intelligence models and tools for the assessment of drug–herb interactions. Pharmaceuticals. 2025;18(3):282. https://doi.org/10.3390/ph18030282
  62. 62. Noury H, Rahdar A, Ferreira LF, Jamalpoor Z. AI-driven innovations in smart multifunctional nanocarriers for drug and gene delivery: a mini-review. Critical Reviews in Oncology Hematology. 2025;104701. https://doi.org/10.1016/j.critrevonc.2025.104701
  63. 63. Alghamdi MA, Fallica AN, Virzì N, Kesharwani P, Pittalà V, Greish K. The promise of nanotechnology in personalized medicine. Journal of Personalized Medicine. 2022;12(5):673. https://doi.org/10.3390/jpm12050673
  64. 64. Guo M, Qin S, Wang S, Sun M, Yang H, Wang X, et al. Herbal medicine nanocrystals: a potential novel therapeutic strategy. Molecules. 2023;28(17):6370. https://doi.org/10.3390/molecules28176370
  65. 65. Anurogo D. The art of nanoimmunoherbogenomics 5.0. 2025.
  66. 66. Fornaguera C, García-Celma MJ. Personalized nanomedicine: a revolution at the nanoscale. Journal of Personalized Medicine. 2017;7(4):12. https://doi.org/10.3390/jpm7040012
  67. 67. Patra S, Bala NN, Nandi G. Synthesis, characterization and fabrication of sodium carboxymethyl-okra-gum-grafted-polymethacrylamide into sustained release tablet matrix. International Journal of Biological Macromolecules. 2020;164:3885–900. https://doi.org/10.1016/j.ijbiomac.2020.09.025
  68. 68. Aghaz F, Vaisi-Raygani A, Khazaei M, Arkan E, Sajadimajd S, Mozafari H, et al. Co-encapsulation of tertinoin and resveratrol by solid lipid nanocarrier improves mice in vitro matured oocyte/morula-compact stage embryo development. Theriogenology. 2021;171:1–3. https://doi.org/10.1016/j.theriogenology.2021.05.007
  69. 69. Sahu M, Ganguly M, Sharma P. Role of black tea in the advancement of nanotechnology: a critical review. ACS Omega. 2025;10(11):10741–55. https://doi.org/10.1021/acsomega.4c10225
  70. 70. Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25(9):2193. https://doi.org/10.3390/molecules25092193
  71. 71. Panda DS, Eid HM, Elkomy MH, Khames A, Hassan RM, Abo El-Ela FI, et al. Berberine encapsulated lecithin–chitosan nanoparticles as innovative wound healing agent in type II diabetes. Pharmaceutics. 2021;13(8):1197. https://doi.org/10.3390/pharmaceutics13081197
  72. 72. Abomosallam M, Hendam BM, Abdallah AA, Refaat R, El-Hak HN. Neuroprotective effect of Withania somnifera leaves extract nanoemulsion against penconazole-induced neurotoxicity in albino rats via modulating TGF-β1/Smad2 signaling pathway. Inflammopharmacology. 2024;32(3):1903–28. https://doi.org/10.1007/s10787-024-01461-8

Downloads

Download data is not yet available.