Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Comparative study of proximate composition, antioxidant and FT-IR profiles of Flourensia cernua DC., Jatropha dioica Sessé and Lippia graveolens Kunth from Mexican semi-arid regions

DOI
https://doi.org/10.14719/pst.9665
Submitted
28 May 2025
Published
26-11-2025

Abstract

Flourensia cernua  DC (Hojasén), Jatropha dioica Sessé (Sangre de Drago) and Lippia graveolens Kunth (Oregano) are three of the main medicinal plants native to the semi-arid regions of northern Mexico. Adaptation to these environments influences their compositional profile and biological activities; however such aspects remain underexplored. Hence this study aimed to compare the proximate composition, antioxidant activity and FT-IR fingerprints of these species collected from different semi-arid regions. The results revealed significant differences (p < 0.05) among collection sites. Overall, samples from San Jerónimo (SJ) and Estanque de León (EL) locations showed higher dry matter, crude protein and nitrogen-free extract contents. Conversely, samples from La Tortuga (T) location exhibited higher moisture, ash, crude fat and crude fibre contents. Regarding antioxidant activity, samples from SJ and EL recorded lower IC50 values in both DPPH and ABTS•+ assays along with higher FRAP values. Finally, all locations exhibited comparable FT-IR spectra, confirming the presence of several functional groups such as C=O, C–H, C–O, C-N, and N–H. Although variability was site-dependent, we highlight the nutritional and functional potential of F. cernua, J. dioica, and L. graveolens for future applications.

References

  1. 1. Joshi T, Deepa PR, Joshi M, Sharma PK. Matters of the desert: A perspective on achieving food and nutrition security through plants of the (semi) arid regions. J Agric Food Res. 2023;14:100725. https://doi.org/10.1016/j.jafr.2023.100725
  2. 2. Mohanta TK, Mohanta YK, Kaushik P, Kumar J. Physiology, genomics, and evolutionary aspects of desert plants. J Adv Res. 2024;58:63-78. https://doi.org/10.1016/j.jare.2023.04.019
  3. 3. Márquez-Rangel I, Cruz M, Neira-Vielma AA, Ramírez-Barrón SN, Aguilar-Zarate P, Belmares R. Plants from arid zones of Mexico: Bioactive compounds and potential use for food production. Resources. 2025;14(1):13. https://doi.org/10.3390/resources14010013
  4. 4. Dávila-Rangel IE, Charles-Rodríguez AV, López-Romero JC, Flores-López ML. Plants from arid and semi-arid zones of Mexico used to treat respiratory diseases: A review. Plants. 2024;13(6):792. https://doi.org/10.3390/plants13060792
  5. 5. Linares-Braham A, Palomo-Ligas L, Nery-Flores SD. Bioactive compounds and pharmacological potential of hojasen (Flourensia cernua): A mini review. Plant Sci Today. 2023;10(sp2):304-12. https://doi.org/10.14719/pst.2546
  6. 6. Aranda-Ledesma NE, González-Hernández MD, Rojas R, Paz-González AD, Rivera G, Luna-Sosa B, et al. Essential oil and polyphenolic compounds of Flourensia cernua leaves: Chemical profiling and functional properties. Agronomy. 2022;12(10):2274. https://doi.org/10.3390/agronomy12102274
  7. 7. Jasso-de Rodríguez D, Torres-Moreno H, López-Romero JC, Vidal-Gutiérrez M, Villarreal-Quintanilla JA, Carrillo-Lomelí DA, et al. Antioxidant, anti-inflammatory, and antiproliferative activities of Flourensia spp. Biocatal Agric Biotechnol. 2023;47:102552. https://doi.org/10.1016/j.bcab.2022.102552
  8. 8. Majeed I, Rizwan K, Saber FR, Munir S, Soria-Lopez A, Otero P. Ethnotraditional uses and potential industrial and nutritional applications of secondary metabolites of genus Jatropha L. (Euphorbiaceae): A review. J Agric Food Res. 2025;21:101861. https://doi.org/10.1016/j.jafr.2025.101861
  9. 9. Bastos-Cavalcante N, da Conceição-Santos AD, da Silva-Almeida JRG. The genus Jatropha (Euphorbiaceae): A review on secondary chemical metabolites and biological aspects. Chem Biol Interact. 2020;318:108976. https://doi.org/10.1016/j.cbi.2020.108976
  10. 10. Rodríguez-Rodríguez DR, Mendoza-Hernández OH, Cordero-Pérez P, Rivas-Galindo VM, Moreno-Peña DP, Tijerina-Márquez R, et al. Nephroprotective and antioxidant effects of Jatropha dioica extract against ischemia–reperfusion injury in wistar rats. Int J Mol Sci. 2025;26(5):1838. https://doi.org/10.3390/ijms26051838
  11. 11. Bautista-Hernández I, Aguilar CN, Martínez-Ávila GCG, Torres-León C, Ilina A, Flores-Gallegos AC, et al. Mexican oregano (Lippia graveolens Kunth) as source of bioactive compounds: A review. Molecules. 2021;26(17):5156. https://doi.org/10.3390/molecules26175156
  12. 12. García-Bores AM, Espinosa-González AM, Reyna-Campos A, Cruz-Toscano S, Benítez-Flores JC, Hernández-Delgado CT, et al. Lippia graveolens photochemopreventive effect against UVB radiation-induced skin carcinogenesis. J Photochem Photobiol B. 2017;167:72-81. https://doi.org/10.1016/j.jphotobiol.2016.12.014
  13. 13. Amador S, Nieto-Camacho A, Ramírez-Apan MT, Martínez M, Maldonado E. Cytotoxic, anti-inflammatory, and α-glucosidase inhibitory effects of flavonoids from Lippia graveolens (Mexican oregano). Med Chem Res. 2020;29:1497-506. https://doi.org/10.1007/s00044-020-02569-6
  14. 14. Yahia Y, Bagues M, Zaghdoud C, Al-Amri SM, Nagaz K, Guerfel M. Phenolic profile, antioxidant capacity and antimicrobial activity of Calligonum arich L., desert endemic plant in Tunisia. S Afr J Bot. 2019;124:414-19. https://doi.org/10.1016/j.sajb.2019.06.005
  15. 15. Mohamed-Ouali D, Gaceb-Terrak R. Impact of environmental aridity on the phytochemical composition of phenolic extracts and essential oil from Vitex agnus-castus L. leaves acclimated in the Algerian Sahara. Analele Univ din Oradea Fasc Biol. 2023;2:105-16. Available from: https://bioresearch.ro/2023-2/105-116-AUOFB.30.2.2023-MOHAMED.OUALI.D-Impact.of.environmental.pdf
  16. 16. Jaradat N, Adwan L, K’aibni S, Zaid AN, Shtaya MJY, Shraim N, et al. Variability of chemical compositions and antimicrobial and antioxidant activities of Ruta chalepensis leaf essential oils from three Palestinian regions. Biomed Res Int. 2017;2017:2672689. https://doi.org/10.1155/2017/2672689
  17. 17. Association of Official Analytical Collaboration International–AOAC International. Official Methods of Analysis. 17th ed. Washington (DC): AOAC International; 2000. Available from: https://www.aoac.org
  18. 18. Ascacio-Valdés J, Aguilera-Carbó A, Martínez-Hernández J, Rodríguez-Herrera R, Aguilar C. Euphorbia antisyphilitica residues as a new source of ellagic acid. Chem Pap. 2010;64(4):528-32. https://doi.org/10.2478/s11696-010-0034-6
  19. 19. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 1995;28(1):25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  20. 20. van den Berg R, Haenen GRMM, van den Berg H, Bast A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 1999;66:511-7. https://doi.org/10.1016/S0308-8146(99)00089-8
  21. 21. Çelik SE, Özyürek M, Güçlü K, Apak R. Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta. 2010;81(4-5):1300-9. https://doi.org/10.1016/j.talanta.2010.02.025
  22. 22. Ntshambiwa KT, Seifu E, Mokhawa G. Nutritional composition, bioactive components and antioxidant activity of Moringa stenopetala and Moringa oleifera leaves grown in Gaborone, Botswana. Food Prod Process Nutr. 2023;5:7. https://doi.org/10.1186/s43014-022-00124-x
  23. 23. Bhattacharya A. Dry matter production, partitioning, and seed yield under soil water deficit: A review. In: Bhattacharya A, editor. Soil water deficit and physiological issues in plants. Singapore: Springer; 2021. p. 585-702.
  24. 24. Yang Q, Yue K, Wu F, Hedenec P, Ni X, Wang D, et al. Global patterns and drivers of initial plant litter ash concentration. Sci Total Environ. 2022;830:154702. https://doi.org/10.1016/j.scitotenv.2022.154702
  25. 25. Leghari SJ, Wahocho NA, Laghari GM, Hafeez-Laghari A, Mustafa-Bhabhan G, Hussain-Talpur K, et al. Role of nitrogen for plant growth and development: A review. Adv Environ Biol. 2016;10(9):209-19. Available from: https://link.gale.com/apps/doc/A472372583/AONE?u=anon~bf1fdbb6&sid=googleScholar&xid=0e3b0964
  26. 26. Wan C, Gao L, Wang J, Lei X, Tao J, Feng B, et al. Effects of nitrogen fertilizer on protein synthesis, accumulation, and physicochemical properties in common buckwheat. Crop J. 2023;11(3):941-50. https://doi.org/10.1016/j.cj.2023.01.002
  27. 27. Murphy DJ. Plant storage lipids. eLS. 2016;1:1-7. https://doi.org/10.1002/9780470015902.a0001918.pub3
  28. 28. Busuttil-Griffin F, Shoemake C, Attard E, Azzopardi LM. Crude fibre determination of Malva sylvestris L. and evaluation of its faecal bulking and laxative properties in rats. Int J Biol. 2015;7(4):1-8. https://doi.org/10.5539/ijb.v7n4p1
  29. 29. Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C. Cell wall metabolism in response to abiotic stress. Plants. 2015;4(1):112-66. https://doi.org/10.3390/plants4010112
  30. 30. Wu W, Chen L, Liang R, Huang S, Li X, Huang B, et al. The role of light in regulating plant growth, development and sugar metabolism: A review. Front Plant Sci. 2025;15:1507628. https://doi.org/10.3389/fpls.2024.1507628
  31. 31. Estell RE, Fredrickson EL, Havstad KM. Chemical composition of Flourensia cernua at four growth stages. Grass Forage Sci. 1996;51(4):434-41. https://doi.org/10.1111/j.1365-2494.1996.tb02078.x
  32. 32. Afolabi QO, Shorinmade AY, Obero OJ. Proximate composition of Jatropha curcas leaves, phytochemical and antibacterial analysis of its ethyl acetate fraction. Asian J Phys Chem Sci. 2017;4(1):1-8. https://doi.org/10.9734/AJOPACS/2017/38037
  33. 33. Djengue HW, Adjatin A, Djehoue R, Bonou-gbo Z, Odjo CT, Koukpo ZC, et al. Assessment of proximal, mineral composition and content of vitamin A and C of leaves and flowers from Lippia multiflora vegetable in Benin. Afr J Biotechnol. 2022;21(3):95-105. https://doi.org/10.5897/AJB2021.17414
  34. 34. Itam A, Wati MS, Agustin V, Sabri N, Jumanah RA, Efdi M. Comparative study of phytochemical, antioxidant, and cytotoxic activities and phenolic content of Syzygium aqueum (Burm. f. Alston f.) extracts growing in west Sumatera Indonesia. Sci World J. 2021;2021:5537597. https://doi.org/10.1155/2021/5537597
  35. 35. Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int J Mol Sci. 2021;22(7):3380. https://doi.org/10.3390/ijms22073380
  36. 36. Vuolo MM, Lima VS, Maróstica-Junior MR. Phenolic compounds: Structure, classification, and antioxidant power. In: Segura-Campos MR, editor. Bioactive compounds: Health benefits and potential applications. Netherlands: Elsevier; 2019. p. 33-50.
  37. 37. Lang Y, Gao N, Zang Z, Meng X, Lin Y, Yang S, et al. Classification and antioxidant assays of polyphenols: A review. J Future Foods. 2024;4(3):193-204. https://doi.org/10.1016/j.jfutfo.2023.07.002
  38. 38. Papalia T, Barreca D, Panuccio MR. Assessment of antioxidant and cytoprotective potential of Jatropha (Jatropha curcas) grown in southern Italy. Int J Mol Sci. 2017;18(3):660. https://doi.org/10.3390/ijms18030660
  39. 39. Chies CE, Branco CS, Scola G, Agostini F, Gower AE, Salvador M. Antioxidant effect of Lippia alba (Miller) N. E. Brown. Antioxidants. 2013;2(4):194-205. https://doi.org/10.3390/antiox2040194
  40. 40. Kumar S, Yadav M, Yadav A, Yadav JP. Impact of spatial and climatic conditions on phytochemical diversity and in vitro antioxidant activity of Indian Aloe vera (L.) Burm.f. S Afr J Bot. 2017;111:50-9. https://doi.org/10.1016/j.sajb.2017.03.012
  41. 41. Umar AH, Syahruni R, Ranteta’dung I, Rafi M. FTIR-based fingerprinting combined with chemometrics method for rapid discrimination of Jatropha spp. (Euphorbiaceae) from different regions in South Sulawesi. J Appl Pharm Sci. 2023;13(1):139-49. https://doi.org/10.7324/JAPS.2023.130113
  42. 42. de Sá-Filho JCF, de Castro-Nizio DA, Souza-de Oliveira AM, Freitas-Alves M, Camargos-de Oliveira R, Queiroz-Luz JM, et al. Geographic location and seasonality affect the chemical composition of essential oils of Lippia alba accessions. Ind Crops Prod. 2022;188(Part A):115602. https://doi.org/10.1016/j.indcrop.2022.115602
  43. 43. Sukmawaty E, Ahmad A, Karim A, Dwyana Z, Karim H, Larekeng SH, et al. Effect of geographical and agroclimatic location on phytocompounds and antioxidant activity of Moringa oleifera leaves. J Adv Biotechnol Exp Ther. 2024;7(3):556-71. https://doi.org/10.5455/jabet.2024.d48
  44. 44. Khan A, Kanwal F, Ullah S, Fahad M, Tariq L, Altaf MT, et al. Plant secondary metabolites–Central regulators against abiotic and biotic stresses. Metabolites. 2025;15(4):276. https://doi.org/10.3390/metabo15040276
  45. 45. Yazıcı H, Çolak S, Duran U. Investigation geographic origin of Laurus nobilis L. leaves using FTIR, SEM-EDX, and XRD analysis. Spectrosc Lett. 2025;58(2):149-60. https://doi.org/10.1080/00387010.2024.2414053
  46. 46. Imelda E, Khairan K, Lubis RR, Karma T, Idroes R. Impact of environmental and geographical position on the chemometric classification of ethanol extracts from Isotoma longiflora leaves. Glob J Environ Sci Manag. 2024;10(1):155-68. https://doi.org/10.22034/gjesm.2024.01.11

Downloads

Download data is not yet available.