Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Comparative response of nanometric forms of Zn and Fe to promote crop biofortification

DOI
https://doi.org/10.14719/pst.9669
Submitted
28 May 2025
Published
10-10-2025
Versions

Abstract

Micronutrient deficiency or malnutrition, particularly iron (Fe) and zinc (Zn), is a serious global health problem and represents a challenge for the agri-food sector. Crop biofortification has emerged as a strategy to increase the mineral content of the target organs. To improve and maximize biofortification, alternatives, such as nanotechnology (mainly nanoparticles), have been proposed and studied. The objective of this minireview was to highlight the responses of nanometric forms of Zn and Fe used in crop biofortification, which can guide the design and/or selection of the most appropriate form to efficiently promote the bioaccumulation of these nutrients. Studies have shown that Fe and Zn applied as nanoparticles (NPs), in different shapes (including spherical, irregular and wurtzite crystals), sizes and doses significantly influence their absorption, translocation rates and ion bioavailability in plants. Spherical NPs are the most common Fe (1-100 nm) and Zn (12-81 nm) nanoforms used. The supplementation routes include foliar application, drench and seed priming, with responses depending on the dose applied, which ranged from 20-500 mg L-1 for Fe NPs and 10-1000 mg L−1 for Zn NPs. Biofortification with Zn NPs increased the Zn content up to 230 % in wheat grains and 56.61 % in melon fruits. Similarly, Fe contents in cucumber fruits and rice grains increased by 71.37 % and 155.91 %, respectively, when Fe NPs were applied. Different forms of Fe and Zn NPs offer promising strategies to enhance the synthesis and accumulation of bioactive compounds as well as the accumulation of Fe and Zn in plants. However, their use in a wider range of crops requires further study.

References

  1. 1. Stangoulis JCR, Knez M. Biofortification of major crop plants with iron and zinc – Achievements and future directions. Plant Soil. 2022;474(1–2):57–76. https://doi.org/10.1007/s11104-022-05330-7
  2. 2. Khan Y, Sadia H, Ali Shah SZ, Khan MN, Shah AA, Ullah N, et al. Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts. 2022;12(11):1386. https://doi.org/10.3390/catal12111386
  3. 3. Altammar KA. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front Microbiol. 2023;14:1155622. https://doi.org/10.3389/fmicb.2023.1155622
  4. 4. Salem SS, Hammad EN, Mohamed AA, El Dougdoug W. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Res Appl Chem. 2022;13(1):41. https://doi.org/10.33263/briac131.041
  5. 5. Ullah Z, Iqbal J, Abbasi BA, Ijaz S, Munir M, Yaseen T, et al. Applications of nanoparticles in biofortification of crops: Amplifying nutritional quality. In: Shah AN, Fiaz S, Aslam M, Iqbal J, Qayyum A, editors. Crop Biofortification. Wiley; 2025. p. 321–50. https://doi.org/10.1002/9781394273270.ch20
  6. 6. Ajinkya N, Yu X, Kaithal P, Luo H, Somani P, Ramakrishna S. Magnetic iron oxide nanoparticle (IONP) synthesis to applications: Present and future. Materials. 2020;13(20):4644. https://doi.org/10.3390/ma13204644
  7. 7. Kumar Chelike D, Mehta P, Kumar A. A recent review of the synthesis of plant derived iron oxide nanoparticles for metal ion removal. Inorg Chem Commun. 2024;166:112611. https://doi.org/10.1016/j.inoche.2024.112611
  8. 8. Raza A, Khandelwal K, Pandit S, Singh M, Kumar S, Rustagi S, et al. Exploring the potential of metallic and metal oxide nanoparticles for reinforced disease management in agricultural systems: A comprehensive review. Environ Nanotechnol, Monit Manag. 2024;22:100998. https://doi.org/10.1016/j.enmm.2024.100998
  9. 9. Singh A, Singh NB, Afzal S, Singh T, Hussain I. Zinc oxide nanoparticles: A review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J Mater Sci. 2018;53(1):185–201. https://doi.org/10.1007/s10853-017 1544 1
  10. 10. Haider FU, Zulfiqar U, ul Ain N, Hussain S, Maqsood MF, Ejaz M, et al. Harnessing plant extracts for eco friendly synthesis of iron nanoparticle (Fe NPs): Characterization and their potential applications for ameliorating environmental pollutants. Ecotoxicol Environ Saf. 2024;281:116620. https://doi.org/10.1016/j.ecoenv.2024.116620
  11. 11. Kladko DV, Falchevskaya AS, Serov NS, Prilepskii AY. Nanomaterial shape influence on cell behavior. Int J Mol Sci. 2021;22(10):5266. https://doi.org/10.3390/ijms22105266
  12. 12. Yadav A, Yadav K, Abd Elsalam K. Nanofertilizers: Types, delivery and advantages in agricultural sustainability. Agrochemicals. 2023;2(2):296–336. https://doi.org/10.3390/agrochemicals2020019
  13. 13. Kim SH, Bae S, Sung YW, Hwang YS. Effects of particle size on toxicity, bioaccumulation, and translocation of zinc oxide nanoparticles to bok choy (Brassica chinensis L.) in garden soil. Ecotoxicol Environ Saf. 2024;280:116519. https://doi.org/10.1016/j.ecoenv.2024.11659
  14. 14. Yuan J, Chen Y, Li H, Lu J, Zhao H, Liu M, et al. New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Sci Rep. 2018;8(1):3228. https://doi.org/10.1038/s41598-017 18055 w
  15. 15. Hu J, Guo H, Li J, Wang Y, Xiao L, Xing B. Interaction of γ Fe₂O₃ nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application. J Nanobiotechnology. 2017;15(1):51. https://doi.org/10.1186/s12951 017 0286 1
  16. 16. Rai P, Sharma S, Tripathi S, Prakash V, Tiwari K, Suri S, et al. Nanoiron: Uptake, translocation and accumulation in plant systems. Plant Nano Biol. 2022;2:100017. https://doi.org/10.1016/j.plana.2022.100017
  17. 17. Hanif S, Farooq S, Kiani MZ, Zia M. Surface modified ZnO NPs by betaine and proline build up tomato plants against drought stress and increase fruit nutritional quality. Chemosphere. 2024;362:142671. https://doi.org/10.1016/j.chemosphere.2024.142671
  18. 18. Naveed M, Khalid H, Ayub MA, Rehman MZ ur, Rizwan M, Rasul A, et al. Biofortification of cereals with zinc and iron: Recent advances and future perspectives. In: Kumar S, Meena RS, Jhariya MK, editors. Resources Use Efficiency in Agriculture. Singapore: Springer Singapore; 2020. p. 615–46. https://doi.org/10.1007/978-981-15 6953 1_17
  19. 19. Dhaliwal SS, Sharma V, Shukla AK, Verma V, Kaur M, Shivay YS, et al. Biofortification— A frontier novel approach to enrich micronutrients in field crops to encounter the nutritional security. Molecules. 2022;27(4):1340. https://doi.org/10.3390/molecules27041340
  20. 20. Yousaf N, Sardar MF, Ishfaq M, Yu B, Zhong Y, Zaman F, et al. Insights into iron based nanoparticles (hematite and magnetite) improving the maize growth (Zea mays L.) and iron nutrition with low environmental impacts. Chemosphere. 2024;362:142781. https://doi.org/10.1016/j.chemosphere.2024.142781
  21. 21. Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, et al. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019;214:269–77. https://doi.org/10.1016/j.chemosphere.2018.09.120
  22. 22. Hassan UU, Khan M, Younas Z, Raja NI, Mashwani ZUR, Sohail. Effect of phytogenic iron nanoparticles on the bio fortification of wheat varieties. Green Process Synth. 2023;12(1):20238002. https://doi.org/10.1515/gps 2023-8002
  23. 23. Ponce García CO, Soto Parra JM, Sánchez E, Muñoz Márquez E, Piña Ramírez FJ, Flores Córdova MA, et al. Efficiency of nanoparticle, sulfate, and zinc chelate use on biomass, yield, and nitrogen assimilation in green beans. Agronomy. 2019;9(3):128. https://doi.org/10.3390/agronomy9030128
  24. 24. Sun H, Guo W, Zhou Q, Gong Y, Lv Z, Wang Q, et al. Uptake, transformation, and environmental impact of zinc oxide nanoparticles in a soil wheat system. Sci Total Environ. 2023;857:159307. https://doi.org/10.1016/j.scitotenv.2022.159307
  25. 25. Shoukat A, Maryam U, Pitann B, Zafar MM, Nawaz A, Hassan W, et al. Efficacy of nano and conventional zinc and silicon fertilizers for nutrient use efficiency and yield benefits in maize under saline field conditions. Plants. 2025;14(5):673. https://doi.org/10.3390/plants14050673
  26. 26. Sannino D. Types and classification of nanomaterials. In: Tahir MB, Rafique M, Sagir M, editors. Nanotechnology. Singapore: Springer Singapore; 2021. p. 15–38. https://doi.org/10.1007/978-981-15 9437 3_2
  27. 27. Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, et al. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro food applications. Nanomaterials. 2022;12(3):457. https://doi.org/10.3390/nano12030457
  28. 28. Thomas D, Reshmy R, Philip E, Latha MS, Madhavan A, Sindhu R, et al. Carbon nanomaterial based nanocrystals for dental applications. In: Mallakpour S, Hussain CM, editors. Functionalized Carbon Nanomaterials for Theranostic Applications. Elsevier; 2023. p. 287–308. https://doi.org/10.1016/B978 0 12 824366 4.00018 2
  29. 29. Yang HL, Bai LF, Geng ZR, Chen H, Xu LT, Xie YC, et al. Carbon quantum dots: Preparation, optical properties, and biomedical applications. Mater Today Adv. 2023;18:100376. https://doi.org/10.1016/j.mtadv.2023.100376
  30. 30. Albesa AG, Vicente JL. Estudio comparativo de la adsorción de nitrógeno sobre nanoconos y nanotubos de carbón. Rev Boliv Química. 2009;26(1):37–46.
  31. 31. Tombuloglu G, Slimani Y, Tombuloglu H, Alsaeed M, Turumtay EA, Sozeri H, et al. Impact of sonication time in nanoparticle synthesis on the nutrition and growth of wheat (Triticum aestivum L.) plant. Plant Nano Biol. 2024;8:100075. https://doi.org/10.1016/j.plana.2024.100075
  32. 32. Huang R, Lu X, Li W, Xiong J, Yang J. Progress on the adsorption characteristics of nZVI and other iron-modified biochar for phosphate adsorption in water bodies. Circ Econ. 2024;3(4):100112. https://doi.org/10.1016/j.cec.2024.100112
  33. 33. Aslam MMA, Gao F, Sun T, Chen G, Ali I, Peng C, et al. Nano zero-valent iron-based technology for environmental remediation: Synthesis techniques and strategies to address limitations. Sustain Mater Technol. 2025;44:e01362. https://doi.org/10.1016/j.susmat.2025.e01362
  34. 34. Raza MAS, Muhammad F, Farooq M, Aslam MU, Akhter N, Toleikienė M, et al. ZnO-nanoparticles and stage-based drought tolerance in wheat (Triticum aestivum L.): Effect on morpho-physiology, nutrients uptake, grain yield and quality. Sci Rep. 2025;15(1):5309. https://doi.org/10.1038/s41598-025-89718-2
  35. 35. Srivastav P, Vutukuru M, Ravindran G, Awad MM. Biofortification—Present scenario, possibilities and challenges: A scientometric approach. Sustainability. 2022;14(18):11632. https://doi.org/10.3390/su141811632
  36. 36. Ofori KF, Antoniello S, English MM, Aryee ANA. Improving nutrition through biofortification–A systematic review. Front Nutr. 2022;9:1043655. https://doi.org/10.3389/fnut.2022.1043655
  37. 37. Avnee, Sood S, Chaudhary DR, Jhorar P, Rana RS. Biofortification: An approach to eradicate micronutrient deficiency. Front Nutr. 2023;10:1233070. https://doi.org/10.3389/fnut.2023.1233070
  38. 38. Zhou D, Zhou Y, Li Y, Shen W. Nanostructured iron oxides for heterogeneous catalysis. Energy Chem. 2024;6(4):100124. https://doi.org/10.1016/j.enchem.2024.100124
  39. 39. Machala L, Tuček J, Zbořil R. Polymorphous transformations of nanometric iron (III) oxide: A review. Chem Mater. 2011;23(14):3255–72. https://doi.org/10.1021/cm200397g
  40. 40. Dlamini NG, Basson AK, Pullabhotla VSR. Synthesis and characterization of various bimetallic nanoparticles and their application. Appl Nano. 2023;4(1):1–24. https://doi.org/10.3390/applnano4010001
  41. 41. Liu WJ, Qian TT, Jiang H. Bimetallic Fe nanoparticles: Recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chem Eng J. 2014;236:448–63. https://doi.org/10.1016/j.cej.2013.10.062
  42. 42. Rajput VD, Minkina T, Fedorenko A, Chernikova N, Hassan T, Mandzhieva S, et al. Effects of zinc oxide nanoparticles on physiological and anatomical indices in spring barley tissues. Nanomaterials. 2021;11(7):1722. https://doi.org/10.3390/NANO11071722
  43. 43. Goel S, Kumar B. A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures. J Alloys Compd. 2020;816:152491. https://doi.org/10.1016/J.JALLCOM.2019.152491
  44. 44. Rivera-Solís LL, Medrano-Macías J, Morelos-Moreno Á, Sahito ZA, Benavides-Mendoza A. Biostimulation of plants with nanocomposites: A new perspective to improve crop production. In: Thamaraiselvan C, Lau WJ, Juárez-Maldonado A, Othman NH, editors. Nanocomposites for Environmental, Energy, and Agricultural Applications. Elsevier; 2024. p. 217–76. (Woodhead Publishing Series in Composites Science and Engineering). https://doi.org/10.1016/B978-0-443-13935-2.00008-5
  45. 45. Jeon SJ, Hu P, Kim K, Anastasia CM, Kim HI, Castillo C, et al. Electrostatics control nanoparticle interactions with model and native cell walls of plants and algae. Environ Sci Technol. 2023;57(48):19663–77. https://doi.org/10.1021/acs.est.3c05686
  46. 46. Molnár Á, Rónavári A, Bélteky P, Szőllősi R, Valyon E, Oláh D, et al. ZnO nanoparticles induce cell wall remodeling and modify ROS/RNS signalling in roots of Brassica seedlings. Ecotoxicol Environ Saf. 2020;206:111158. https://doi.org/10.1016/j.ecoenv.2020.111158
  47. 47. Zhu J, Li J, Shen Y, Liu S, Zeng N, Zhan X, et al. Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environ Sci Nano. 2020;7(12):3901–13. https://doi.org/10.1039/D0EN00658K
  48. 48. Yan S, Wu F, Zhou S, Yang J, Tang X, Ye W. Zinc oxide nanoparticles alleviate the arsenic toxicity and decrease the accumulation of arsenic in rice (Oryza sativa L.). BMC Plant Biol. 2021;21(1):150. https://doi.org/10.1186/s12870-021-02929-3
  49. 49. Gao F, Zhang X, Zhang J, Li J, Niu T, Tang C, et al. Zinc oxide nanoparticles improve lettuce (Lactuca sativa L.) plant tolerance to cadmium by stimulating antioxidant defense, enhancing lignin content and reducing the metal accumulation and translocation. Front Plant Sci. 2022;13. https://doi.org/10.3389/fpls.2022.1015745
  50. 50. Singh N, Singh MK, Yadav RK, Azim Z. Role of green synthesized nano iron oxide in alleviating the cadmium toxicity in Brassica oleracea var. italica seedlings. Plant Nano Biol. 2023;6:100055. https://doi.org/10.1016/j.plana.2023.100055
  51. 51. Zhang J, Gao F, Xie J, Li J, Wang C, Zhang X, et al. Zinc oxide nanoparticles reduce cadmium accumulation in hydroponic lettuce (Lactuca sativa L.) by increasing photosynthetic capacity and regulating phenylpropane metabolism. Ecotoxicol Environ Saf. 2024;285:117033. https://doi.org/10.1016/j.ecoenv.2024.117033
  52. 52. Alkhatib R, Alkhatib B, Abdo N, AL-Eitan L, Creamer R. Physio-biochemical and ultrastructural impact of (Fe₃O₄) nanoparticles on tobacco. BMC Plant Biol. 2019;19(1):253. https://doi.org/10.1186/s12870-019-1864-1
  53. 53. Akanbi-Gada MA, Ogunkunle CO, Vishwakarma V, Viswanathan K, Fatoba PO. Phytotoxicity of nano-zinc oxide to tomato plant (Solanum lycopersicum L.): Zn uptake, stress enzymes response and influence on non-enzymatic antioxidants in fruits. Environ Technol Innov. 2019;14:100325. https://doi.org/10.1016/j.eti.2019.100325
  54. 54. Wang Q, Zhang P, Zhao W, Li Y, Jiang Y, Rui Y, et al. Interplay of metal-based nanoparticles with plant rhizosphere microenvironment: Implications for nanosafety and nano-enabled sustainable agriculture. Environ Sci Nano. 2023;10(2):372–92. https://doi.org/10.1039/D2EN00803C
  55. 55. Wu H, Li Z. Nano-enabled agriculture: How do nanoparticles cross barriers in plants? Plant Commun. 2022;3(6):100346. https://doi.org/10.1016/j.xplc.2022.100346
  56. 56. Lv Z, Sun H, Du W, Li R, Mao H, Kopittke PM. Interaction of different-sized ZnO nanoparticles with maize (Zea mays): Accumulation, biotransformation and phytotoxicity. Sci Total Environ. 2021;796:148927. https://doi.org/10.1016/j.scitotenv.2021.148927
  57. 57. Zhu J, Wang J, Zhan X, Li A, White JC, Gardea-Torresdey JL, et al. Role of charge and size in the translocation and distribution of zinc oxide particles in wheat cells. ACS Sustain Chem Eng. 2021;9(34):11556–64. https://doi.org/10.1021/acssuschemeng.1c04080
  58. 58. Avellan A, Yun J, Morais BP, Clement ET, Rodrigues SM, Lowry GV. Critical review: Role of inorganic nanoparticle properties on their foliar uptake and in planta translocation. Environ Sci Technol. 2021;55(20):13417–31. https://doi.org/10.1021/acs.est.1c00178
  59. 59. Chen L, Qing W, Li X, Chen W, Hao C, Liu D, et al. Optimal size of Fe₃O₄ nanoparticles for different crops depends on the unique nanoscale microstructure of plant leaves under rainy conditions. Environ Sci Nano. 2025;12(1):353–67. https://doi.org/10.1039/D4EN00753K
  60. 60. Guo S, Hu X, Wang Z, Yu F, Hou X, Xing B. Zinc oxide nanoparticles cooperate with the phyllosphere to promote grain yield and nutritional quality of rice under heatwave stress. Proc Natl Acad Sci. 2024;121(46). https://doi.org/10.1073/pnas.2414822121
  61. 61. Mathur P, Chakraborty R, Aftab T, Roy S. Engineered nanoparticles in plant growth: Phytotoxicity concerns and the strategies for their attenuation. Plant Physiol Biochem. 2023;199:107721. https://doi.org/10.1016/j.plaphy.2023.107721
  62. 62. Sharma MM, Kapoor D, Rohilla R, Sharma P. Nanomaterials and their toxicity to beneficial soil microbiota and fungi associated plants rhizosphere. In: Husen A, editor. Nanomaterials and Nanocomposites Exposures to Plants. Smart Nanomaterials Technology. Singapore: Springer; 2023. p. 353-80. https://doi.org/10.1007/978 981 99 2419 6_18
  63. 63. Kumah EA, Fopa RD, Harati S, Boadu P, Zohoori FV, Pak T. Human and environmental impacts of nanoparticles: A scoping review of the current literature. BMC Public Health. 2023;23:1059. https://doi.org/10.1186/s12889-023-15958-4
  64. 64. Fatima F, Hashim A, Anees S. Efficacy of nanoparticles as nanofertilizer production: A review. Environ Sci Pollut Res. 2021;28(2):1292–303. https://doi.org/10.1007/S11356-020-11218-9
  65. 65. Guardiola Márquez CE, Santos Ramírez MT, Segura Jiménez ME, Figueroa Montes ML, Jacobo Velázquez DA. Fighting obesity related micronutrient deficiencies through biofortification of agri food crops with sustainable fertilization practices. Plants. 2022;11(24):3477. https://doi.org/10.3390/PLANTS11243477
  66. 66. Sundaria N, Singh M, Upreti P, Chauhan RP, Jaiswal JP, Kumar A. Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains. J Plant Growth Regul. 2019;38(1):122–31. https://doi.org/10.1007/s00344-018-9818-7
  67. 67. Guillén Enríquez RR, Zuñiga Estrada L, Ojeda Barrios DL, Rivas García T, Trejo Valencia R, Preciado Rangel P. Efecto de la nanobiofortificación con hierro en el rendimiento y compuestos bioactivos en pepino. Rev Mex Ciencias Agrícolas. 2022;13(28):173–84. https://doi.org/10.29312/REMEXCA.V13I28.3272
  68. 68. Rashid MH, Rahman MM, Halim MA, Naidu R. Growth, metal partitioning and antioxidant enzyme activities of mung beans as influenced by zinc oxide nanoparticles under cadmium stress. Crop Pasture Sci. 2022;73(8):862–76. https://doi.org/10.1071/CP21598
  69. 69. Makarian H, Shojaei H, Damavandi A, Nasiri Dehsorkhi A, Akhyani A. The effect of foliar application of zinc oxide in common and nanoparticles forms on some growth and quality traits of mungbean (Vigna radiata L.) under drought stress conditions. Iran J Pulses Res. 2017;8(2):166–80. https://doi.org/10.22067/IJPR.V8I2.51644
  70. 70. Raliya R, Tarafdar JC, Biswas P. Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J Agric Food Chem. 2016;64(16):3111–18. https://doi.org/10.1021/ACS.JAFC.5B05224
  71. 71. Garza Alonso CA, Juárez Maldonado A, González Morales S, Cabrera De la Fuente M, Cadenas Pliego G, Morales Díaz AB, et al. ZnO nanoparticles as potential fertilizer and biostimulant for lettuce. Heliyon. 2023;9(1):e12787. https://doi.org/10.1016/j.heliyon.2022.e12787
  72. 72. Guillén Enríquez RR, Buendía García A, Ruiz Juarez D, Alfaro Hernandez L, Sariñana Aldaco O, Hermosillo Alba MC, et al. Influence of zinc oxide nanoparticles on bioactive compounds in melon fruits (Cucumis melo L.). Chil J Agric Anim Sci. 2023;40(3):494–502. https://doi.org/10.29393/CHJAAS40 41IZRP70041
  73. 73. Feng Y, Kreslavski VD, Shmarev AN, Ivanov AA, Zharmukhamedov SK, Kosobryukhov A, et al. Effects of iron oxide nanoparticles (Fe₃O₄) on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum) plants. Plants. 2022;11(14):1894. https://doi.org/10.3390/PLANTS11141894
  74. 74. Kreslavski VD, Shmarev AN, Ivanov AA, Zharmukhamedov SK, Strokina V, Kosobryukhov A, et al. Effects of iron oxide nanoparticles (Fe₃O₄) and salinity on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum). Funct Plant Biol. 2023;50(11):932–40. https://doi.org/10.1071/FP23085
  75. 75. Timilsina A, Adhikari K, Chen H. Foliar application of green synthesized ZnO nanoparticles reduced Cd content in shoot of lettuce. Chemosphere. 2023;338:139589. https://doi.org/10.1016/j.chemosphere.2023.139589
  76. 76. Zimbovskaya MM, Polyakov AYu, Volkov DS, Kulikova NA, Lebedev VA, Pankratov DA, et al. Foliar application of humic stabilized nanoferrihydrite resulted in an increase in the content of iron in wheat leaves. Agronomy. 2020;10(12):1891. https://doi.org/10.3390/agronomy10121891
  77. 77. Bautista Diaz J, Cruz Alvarez O, Hernández Rodríguez OA, Sánchez Chávez E, Jacobo Cuéllar JL, Preciado Rangel P, et al. Zinc sulphate or zinc nanoparticle applications to leaves of green beans. Folia Hortic. 2021;33(2):365–75. https://doi.org/10.2478/fhort-2021-0028
  78. 78. Singh R, Saffeullah P, Umar S, Abass S, Ahmad S, Iqbal N. Comparing the individual and combined effects of nano zinc and conventional zinc fertilization on growth, yield, phytochemical properties, antioxidant activity, and secoisolariciresinol diglucoside content in linseed. Plant Nano Biol. 2024;10:100098. https://doi.org/10.1016/j.plana.2024.100098
  79. 79. Ahmad S, Ahmad N, Islam MdS, Ahmad MA, Ercisli S, Ullah R, et al. Rice seeds biofortification using biogenic iron oxide nanoparticles synthesized by using Glycyrrhiza glabra: A study on growth and yield improvement. Sci Rep. 2024;14(1):12368. https://doi.org/10.1038/s41598-024-62907-1
  80. 80. Mondal A, Dey I, Mukherjee A, Ismail A, Satpati GG, Banerjee S, et al. Spirulina biomass loaded with iron nanoparticles: A novel biofertilizer for the growth and enrichment of iron content in rice plants. Biocatal Agric Biotechnol. 2024;61:103387. https://doi.org/10.1016/j.bcab.2024.103387
  81. 81. García Reyes E, García López JI, Ramírez Barrón SN, Flores Naveda A, Álvarez Vázquez P, Hernández Juárez A, et al. Calcareous soil modified with metallic and organic ZnO nanoparticles limits photosynthetic pigment accumulation and macronutrient uptake in Swiss chard (Beta vulgaris var. cicla). Plant Nano Biol. 2024;10:100108. https://doi.org/10.1016/j.plana.2024.100108
  82. 82. Luciano Velázquez J, López Cruz I, Rivera Ortíz AA, Moreno Echevarría GD, Bailón Ruiz SJ, López Moreno ML. Effect of TGA coated ZnS quantum dots on growth development of basil (Ocimum basilicum) plants. Plant Nano Biol. 2024;9:100084. https://doi.org/10.1016/j.plana.2024.100084
  83. 83. Lv Z, Zhong M, Zhou Q, Li Z, Sun H, Bai J, et al. Nutrient strengthening of winter wheat by foliar ZnO and Fe₃O₄ NPs: Food safety, quality, elemental distribution and effects on soil bacteria. Sci Total Environ. 2023;893:164866. https://doi.org/10.1016/j.scitotenv.2023.164866
  84. 84. Mi K, Yuan X, Wang Q, Dun C, Wang R, Yang S, et al. Zinc oxide nanoparticles enhanced rice yield, quality, and zinc content of edible grain fraction synergistically. Front Plant Sci. 2023;14:1196201. https://doi.org/10.3389/fpls.2023.1196201
  85. 85. Du W, Yang J, Peng Q, Liang X, Mao H. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere. 2019;227:109–16. https://doi.org/10.1016/J.CHEMOSPHERE.2019.03.168
  86. 86. Qamar R, Abbas SN, Atique ur Rehman, Javeed HMR, Nadeem MA, Safdar ME, et al. Hydropriming and nano priming with zinc and iron oxide nanoparticles improved growth and physiobiochemical attributes of sugarcane (Saccharum officinarum L.) propagated through bud nodes. J Soil Sci Plant Nutr. 2025. https://doi.org/10.1007/s42729 025 02400 4
  87. 87. Rasouli F, Asadi M, Hassanpouraghdam MB, Aazami MA, Ebrahimzadeh A, Kakaei K, et al. Foliar application of ZnO NPs influences chlorophyll fluorescence and antioxidants pool in Capsicum annum L. under salinity. Horticulturae. 2022;8(10):908. https://doi.org/10.3390/HORTICULTURAE8100908
  88. 88. García Ovando AE, Ramírez Piña JE, Esquivel Naranjo EU, Cervantes Chávez JA, Esquivel K. Biosynthesized nanoparticles and implications by their use in crops: Effects over physiology, action mechanisms, plant stress responses and toxicity. Plant Stress. 2022;6:100109. https://doi.org/10.1016/J.STRESS.2022.100109
  89. 89. Li L, Wang X, Lv J, Duan W, Huang T, Zhao K, et al. Overexpression of Sly miR167a delayed postharvest chilling injury of tomato fruit under low temperature storage. Postharvest Biol Technol. 2023;204:112420. https://doi.org/10.1016/j.postharvbio.2023.112420
  90. 90. Nekoukhou M, Fallah S, Abbasi Surki A, Pokhrel LR, Rostamnejadi A. Improved efficacy of foliar application of zinc oxide nanoparticles on zinc biofortification, primary productivity and secondary metabolite production in dragonhead. J Clean Prod. 2022;379:134803. https://doi.org/10.1016/j.jclepro.2022.134803
  91. 91. Samuditha PS, Adassooriya NM, Salim N. Assessing phytotoxicity and tolerance levels of ZnO nanoparticles on Raphanus sativus: Implications for widespread adoptions. Beilstein J Nanotechnol. 2024;15(1):115–25. https://doi.org/10.3762/bjnano.15.11

Downloads

Download data is not yet available.