Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Unravelling the fruit quality, bioactive potential and genetic insights of Indian coffee plum [Flacourtia jangomas (Lour.)Raeusch.] plants under Terai natural vegetation of West Bengal

DOI
https://doi.org/10.14719/pst.9736
Submitted
31 May 2025
Published
17-08-2025 — Updated on 27-08-2025
Versions

Abstract

The present study aimed to unveil the morpho-biochemical characters of fruits, the presence of bioactive compounds and genetic diversity of different Indian coffee plum plants selected from the natural vegetation of the Terai region of West Bengal during the years 2022-23 and 2023-24. A wide array of variationin fruit morphology and quality aspects concerning fruit length (14.7 to 22.4 cm), fruit diameter (17.1 to 23.7 cm), fruit weight (4.37 to 7.82 g), number of seeds (5.8 to 11.1), TSS (6.2 to 10.9ºBrix), acidity (0.40 to 0.52 %), reducing sugar (4.02 to 5.80 %) and ascorbic acid content (100.5 to 156.7 mg/100g)wasnoticed. Fruits of selected plants also possessed comprehensive variation in antioxidants (63.9 to 88.7 % of DPPH inhibition), total phenols (145.7 to 278.6 µgGAE/g), flavonoids (85.1 to 163.9 mgQE/g), anthocyanin content (33.5 to 56.4 µg/100g) and carotenoid content (1.135 to 1.6114 mg/100 g). A positive correlation was noted among fruit size, quality parameters such as TSS, acidity and ascorbic acid content.Ascorbic acid content was foundto be positively correlated with fruit size, total sugar, antioxidant activity, phenol, flavonoid and carotenoids. A remarkable negative correlation was also noted between the number of fruits per cluster and the number of seeds per fruit, with other parameters. The entire population of Indian coffee plumplantsrepresented three major clusters, comprising 8, 3 and 9 different plants, based on three different parameter clusters, to create such variation. ICPG-J5 is ideal for the commercial fresh fruit market due to its large,heavier fruit and excellent biochemical properties, ascorbic acidand strong antioxidant activity. ICPG-J7 stands out for processing purposes, as it has the largest fruit size, highest weight and a balanced sweet-tangy profile. ICPG-J2 is the best choice for functional food applications, rich in flavonoids, anthocyanins and strong antioxidant properties, making it valuable for health-focused products.

References

  1. 1. Nguyen DT, Vo TXT, Tran NK. Determination of the content of major chemical components and antioxidant ability of Flacourtia jangomas fruits. Plant Sci Today. 2023;10(4):39–43.
  2. 2. Pai A, Shenoy KC. Toxicity and safety profiling of Flacourtia jangomas (Lour.) Raeusch fruit and leaf methanolic extract in Sprague Dawley rats. J Appl Bio Biotech. 2024;12(1):258–64. https://doi.org/10.7324/JABB.2024.152315
  3. 3. Dubey N, Pandey V, Tewari S. Antioxidant potential and phytochemical composition of unripe fruits of Flacourtia jangomas. Med Plants. 2023;5(3):164–7.
  4. 4. Priyadarshini S, Mehta R, Acharya B. A review on underutilized fruit plants of Eastern India. Ind J Hort Sci. 2022;11(1):77–82.
  5. 5. Mishra T, Rai A. A critical review of Flacourtia jangomas (Lour) Raeusch: A rare fruit tree of Gorakhpur division. EJBPS. 2020;7:333-338. Prasad R, Sinha N, Verma M. Ethnobotanical uses and pharmacological significance of thorny fruit species. Ethnomed Res. 2022;4(2):88–96.
  6. 6. Bhowmick S. Some lesser-known minor fruit crops of northern parts of West Bengal. ResearchGate. 2024. https://www.researchgate.net/publication/284242935
  7. 7. Sharma A, Patel S, Mondal A. Sugar metabolism and fruit development in Flacourtia montana: Genetic and environmental influences. Plant Mol Biol Rep. 2021;28(2):99–113. https://doi.org/10.1016/j.pmbr.2021.05.008
  8. 8. Dutta B, Borah N. Studies on nutraceutical properties of Flacourtia jangomas fruits in Assam, India. J Med Plants. 2023;5(2):50–3.
  9. 9. Singh R, Patel S. Functional properties and utilization of minor fruits: A review. Int J Food Nutri Sci. 2020;9(2):45–51.
  10. 10. Tiwari K, Rajak RC, Senapati S. Antioxidant activity of selected indigenous fruits: A case study on wild edibles. J Med Plants Herbal Ther Res. 2021;9:112–20.
  11. 11. Sahoo A, Kar D. Folk medicinal plants and their phyto pharmacological potential in Northeast India. J Trad Med. 2022;6(3):144–50.
  12. 12. Pai A, Shenoy KC. Physicochemical and phytochemical analysis of methanolic extract of leaves and fruits of Flacourtia jangomas (Lour.) Raeusch. Int J Pharm Sci Res. 2021;12(3):1671–8. https://doi.org/10.13040/IJPSR.0975-8232.12(3).1671-78
  13. 13. Yadav M, Kumar S, Mishra R. Antioxidant and antimicrobial activities of Flacourtia jangomas: A comprehensive review. Asian J Pharma Res Dev. 2023;11(1):22–9.
  14. 14. Sharma P, Choudhury R, Sen A. Medicinal value of indigenous fruit plants in Himalayan Terai. Ind J For Res. 2021;5(4):198–205.
  15. 15. Kumar R, Singh A, Yadav S. Phytochemical screening and medicinal properties of underutilized fruit species. Ind J Nat Prod. 2021;37(1):112–7.
  16. 16. Dutta B, Borah N. Studies on nutraceutical properties of Flacourtia jangomas fruits in Assam, India. J Med Plants Stud. 2017;5(1):50–3.
  17. 17. Sharma N, Ghosh T, Das R. Biochemical profiling of Flacourtia jangomas accessions: Implications for breeding and functional food development. Ind J Hort Sci. 2022;41(3):156–70. https://doi.org/10.1016/j.ijhs.2022.08.005
  18. 18. AOAC (Association of Official Analytical Chemists). Official Methods of Analysis. Vol I. 15th ed. Helrich K, editor. Virginia: AOAC; 1990. p. 83.
  19. 19. Ranganna S. Handbook of Analysis and Quality Control of Fruit and Vegetable Products. 2nd ed. New York: Tata McGraw-Hill Education; 1986.
  20. 20. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Tech. 1995;28(1):25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  21. 21. Dewanto V, Wu X, Adom KK, Liu RH. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem. 2002;50(10):3010–4. https://doi.org/10.1021/jf0115589
  22. 22. Giusti MM, Wrolstad RE. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In: Wrolstad RE, editor. Curr Prot Food Anal Chem. 2001;F1.2.1–F1.2.13. Wiley. https://doi.org/10.1002/0471142913.faf0102s00
  23. 23. Lichtenthaler HK, Wellburn AR. Determinations of total carotenoids and chlorophylls a and b. Biochem Soc Trans. 1983;11(5):591–2. https://doi.org/10.1042/bst0110591
  24. 24. Gomez KA, Gomez AA. Statistical Procedures for Agricultural Research. Canada: John Wiley and Sons; 1984. p. 187–240.
  25. 25. Das S, Patel R, Kumar A. Influence of plant on reproductive success and economic traits in Flacourtia indica. Plant Breed J. 2022;35(3):221–34. https://doi.org/10.1016/j.pbj.2022.07.010
  26. 26. Singh J, Roy K, Mishra D. Market preference for fruit size and quality in Flacourtia montana: A case study. Hort Market Res. 2021;15(2):88–103. https://doi.org/10.1016/j.hmr.2021.06.009
  27. 27. Kumar R, Sharma P, Gupta V. Source-sink dynamics in minor fruit crops: A review of trade-offs in resource allocation. Plant Physiol Rep. 2023;29(2):167–78. https://doi.org/10.1016/j.ppr.2023.02.012
  28. 28. Rahman S, Mondal R, Das P. Processing potential of Flacourtia rukam: A review of fruit characteristics and industrial applications. J Food Sci Tech. 2021;38(4):98–112. https://doi.org/10.1016/j.jfst.2021.04.017
  29. 29. Mishra R, Singh V, Patel D. Antioxidant potential and phytochemical composition of Flacourtia indica. J Agrl Biochem. 2023;42(2):122–36. https://doi.org/10.1016/j.jab.2023.03.007
  30. 30. Mandal T, Chatterjee S, Banerjee S. Hierarchical clustering of jackfruit (Artocarpus heterophyllus) plants based on fruit morphology and sweetness. Int J Fruit Sci. 2023;39(1):55–70. https://doi.org/10.1016/j.ijfs.2023.01.009
  31. 31. Das S, Singh P, Kumar R. Genetic basis of fruit set and seed development in Flacourtia indica. Hort Genet. 2023;28(4):98–112. https://doi.org/10.1016/j.hg.2023.04.018
  32. 32. Rahman S, Singh J, Patel R. Genetic basis of fruit biochemical properties in Flacourtia rukam. J Plant Biochem Biotech. 2023;44(1):78–92. https://doi.org/10.1016/j.jpbb.2023.02.020
  33. 33. Borah P, Sharma R, Das A. Genetic diversity and biochemical profiling of Flacourtia jangomas accessions from northeastern India. J Hort Sci. 2023;18(2):145–59. https://doi.org/10.1016/j.jhs.2023.02.005
  34. 34. Patel R, Roy A, Ghosh B. Biochemical characterization and hierarchical clustering of citrus (Citrus spp.) plants based on vitamin C and antioxidant properties. Citrus Res J. 2023;32(2):77–91. https://doi.org/10.1016/j.crj.2023.02.019
  35. 35. Patel S, Sharma N, Gupta A. Acid-sugar balance in Flacourtia montana: A key determinant of fruit flavor. Food Chem. 2021;48(1):135–49. https://doi.org/10.1016/j.foodchem.2021.08.006
  36. 36. Rahman S, Patel K, Sharma T. Quantitative trait loci (QTL) mapping for fruit elongation and width in Flacourtia rukam. Genet Plant Breed. 2022;25(2):122–35. https://doi.org/10.1016/j.gpb.2022.07.013
  37. 37. Barbhuiya RI, Nath D, Singh SK, Dwivedi M. Mass modeling of Indian coffee plum (Flacourtia jangomas) fruit with its physicochemical properties. Int J Fruit Sci. 2020;20(3):S1110–33. https://doi.org/10.1080/15538362.2020.1775161
  38. 38. Nath D, Barbhuiya RI, Singh SK, Dwivedi M. Rheological properties of Indian coffee plum (Flacourtia jangomas) pulp in steady and dynamic shear at different temperatures. Int J Fruit Sci. 2020;21(1):95–105. https://doi.org/10.1080/15538362.2020.1859042
  39. 39. Patil A, Sharma M, Singh K. Genetic variation in flavonoid content and antioxidant capacity of Flacourtia rukam. Functional Foods J. 2023;45(3):312–25. https://doi.org/10.1016/j.ffj.2023.05.021
  40. 40. Roy K, Mandal S, Chatterjee P. Anthocyanin biosynthesis in Flacourtia montana: Genetic regulation and commercial applications. Phytochem. 2023;59(3):201–18. https://doi.org/10.1016/j.phyto.2023.06.012
  41. 41. Singh P, Sharma V, Gupta R. Carotenoid biosynthesis in Flacourtia indica: Genetic and metabolic insights. J Nutri Biochem. 2022;39(1):45–60. https://doi.org/10.1016/j.jnb.2022.03.010
  42. 42. Mondal A, Roy B, Ghosh P. Seed viability and germination studies in Flacourtia indica. Seed Sci Tech. 2021;31(4):88–101. https://doi.org/10.1016/j.sst.2021.04.011
  43. 43. Mishra P, Roger JM, Jouan-Rimbaud-Bouveresse D, Biancolillo A, Marini F, Nordon A, et al. Recent trends in multi-block data analysis in chemometrics for multi-source data integration. TrAC Trends Anal Chem. 2021;137:1–15. https://doi.org/10.1016/j.trac.2021.116206
  44. 44. Whiting RM, Torabi S, Lukens L. Genomic regions associated with important seed quality traits in food-grade soybeans. BMC Plant Biol. 2020;20:485. https://doi.org/10.1186/s12870-020-02681-0
  45. 45. Bian J, Zhao D, Nie F, Wang R, Li X. Robust and sparse principal component analysis with adaptive loss minimization for feature selection. IEEE Trans Neural Netw Learn Syst. 2024;35(3):3601–14. http://doi.org/10.1109/TNNLS.2022.3194896
  46. 46. Govindaraj M, Vetriventhan M, Srinivasan M. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Gen Res Int. 2015;2015:431487. http://dx.doi.org/10.1155/2015/431487
  47. 47. Jolliffe IT, Cadima J. Principal component analysis: A review. Philos Trans R Soc A Math Phys Eng Sci. 2016;374(2065):20150202. https://doi.org/10.1098/rsta.2015.0202
  48. 48. Evensen KB, Williams ME. Genetic diversity in mango using PCA. Hort Sci. 2017;52(4):12–8.
  49. 49. Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, et al. Mixed model approaches for genomic selection. Nat Gen. 2010;42(4):355–60. https://doi.org/10.1038/ng.546
  50. 50. Sasi S, Anjum N, Tripathi YC. Ethnomedicinal, phytochemical and pharmacological aspects of Flacourtia jangomas: A review. Int J Pharm Pharmac Sci. 2018;10(3):9–15. https://doi.org/10.22159/ijpps.2018v10i3.23998
  51. 51. Mondal P, Singh R, Sharma V. High-density orchard management in Flacourtia rukam: Yield potential and agronomic performance. Ind J Hort. 2022;39(3):201–15. https://doi.org/10.1016/j.ijh.2022.09.015
  52. 52. Chang C, Yang M, Wen H, Chern J. Estimation of total flavonoid content in propolis. J Food Drug Anal. 2002;10(3):178–82. https://doi.org/10.38212/2224-6614.2748
  53. 53. Cimafranca LC, Dizon EI. Potential of seriales, Flacourtia jangomas (Lour.) Raeusch, fruit for wine production. Ann Trop Res. 2018;40(2):69–76. https://doi.org/10.32945/atr4026.2018
  54. 54. Dimri R, Kumar S. Flacourtia jangomas and browning activity. J Biodiver Conserv. 2020;4(4):405.
  55. 55. Hasan SK, Sisodia P. Paniala (Flacourtia jangomas) plant extract as eco-friendly inhibitor on the corrosion of mild steel in acidic media. Rasayan J Chem. 2011;4(3):548–53.
  56. 56. Rai A, Mishra T. Ethnomedicinal and therapeutic values of Flacourtia jangomas. J Ind Bot Soc. 2020;100(3–4):169–76. https://doi.org/10.5958/2455-7218.2020.00037.6
  57. 57. Ripa FA, Alam F, Riya FH, Begum Y, Eti SA, Nahar N, et al. Deciphering in vitro and in vivo pharmacological properties of seed and fruit extracts of Flacourtia jangomas (Lour.) Raeusch. Adv Pharm Pharmaceut Sci. 2024;2024:4035987. https://doi.org/10.1155/2024/4035987

Downloads

Download data is not yet available.