Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Enhancing okra performance through osmo-priming: Effects on germination, yield and quality

DOI
https://doi.org/10.14719/pst.9755
Submitted
1 June 2025
Published
09-08-2025
Versions

Abstract

To assess the impact of various seed priming techniques on okra (Punjab Suhawani variety) performance. Seeds were sourced from Punjab Agricultural University; Ludhiana and the study was structured using a randomized block design (RBD) with three replications and eight treatments with plot size of 2.25×3.75m and followed spacing was 45×15 cm. The treatments included: T0 (un-primed) control, T1 (hydro-priming), T2 (osmo-priming with 5 % polyethylene glycol), T3 (osmo-priming with 3 % potassium chloride), T4 (halo-priming with 5 % potassium nitrate), T5 (halo-priming with 1.5 % magnesium nitrate), T6 (hormonal priming with 50 ppm gibberellic acid) and T7 (hormonal priming with 50 ppm naphthalene acetic acid). For each treatment, seeds were soaked in the prepared solutions for 24 hrs before sowing under the shade. The study assessed germination percentage (92.17 %), number of days to germination (5.06 days), seedling dry weight (30.10 mg), seedling length (23.66 cm), seedling Vigor index (2166.95 I and 2627.83 II), root and shoot ratio (0.69), number of pods plant-1 (12.28), individual pod weight (9.28 g), pod yield plot-1 (14.24 kg), pod yield plant-1 (14.29 g), pod yield tonnes hectare (12.89 t ha-1), chlorophyll index (52.13) and mucilage content (5.57 %) and iodine content (mg/kg). The highest germination rate and seedling performance were recorded in T2 (osmo-priming with 5 % PEG), followed closely by T6 (hormonal priming with 50 ppm GA3). In contrast, the unprimed seeds (T0) control showed no significant improvement in any of the evaluated parameters.

References

  1. 1. Dhakal S, Hassan J, Rajib MM, Ghosh TK, Gomasta J, Biswas MS, et al. Seed priming and GA3 field application enhanced growth, yield and postharvest quality of okra. Trends Hortic. 2023;6:3578. https://doi.org/10.24294/th.v6i2.3578
  2. 2. Pandey A, Nivedhitha S, Sagar V, Malav PK, Sharma S, Ahlawat SP. Notes on diversity distribution and systematics study of Abelmoschus tuberculatus Pal & Har B. Singh: a close wild relative of okra from India. Indian J Plant Genet Resour. 2020;33(1):77-84. https://doi.org/10.5958/0976-1926.2020.00011.x
  3. 3. Lamichhane A, Mamata KC, Shrestha M. Effect of seed priming on germination of okra (Abelmoschus esculentus var. Arka Anamika). Malays J Sustain Agric. 2021;5(2):111-4. https://doi.org/10.26480/mjsa.02.2021.111.114
  4. 4. Nhb, D. A. C. National horticulture board. 2018.
  5. 5. Islam MT. Phytochemical information and pharmacological activities of okra (Abelmoschus esculentus): a literature‐based review. Phytother Res. 2019;33(1):72-80. https://doi.org/10.1002/ptr.6212
  6. 6. Elkhalifa AE, Alshammari E, Adnan M, Alcantara JC, Awadelkareem AM, Eltoum NE, et al. Okra (Abelmoschus esculentus) as a potential dietary medicine with nutraceutical importance for sustainable health applications. Molecules. 2021;26(3):696. https://doi.org/10.3390/molecules26030696
  7. 7. Anwar F, Qadir R, Ahmad N. Cold pressed okra (Abelmoschus esculentus) seed oil. In: Cold pressed oils. Academic Press; 2020. p. 309-14. https://doi.org/10.1016/B978-0-12-818188-1.00027-X
  8. 8. Schafleitner R, Lin CY, Lin YP, Wu TH, Hung CH, Phooi CL, et al. The world vegetable center okra (Abelmoschus esculentus) core collection as a source for flooding stress tolerance traits for breeding. Agriculture. 2021;11(2):165. https://doi.org/10.3390/agriculture11020165
  9. 9. Romdhane MH, Chahdoura H, Barros L, Dias MI, Corrêa RC, Morales P, et al. Chemical composition, nutritional value and biological evaluation of Tunisian okra pods (Abelmoschus esculentus L. Moench). Molecules. 2020;25(20):4739. https://doi.org/10.3390/molecules25204739
  10. 10. Olawuyi IF, Lee WY. Structural characterization, functional properties and antioxidant activities of polysaccharide extract obtained from okra leaves (Abelmoschus esculentus). Food Chem. 2021;354:129437. https://doi.org/10.1016/j.foodchem.2021.129437
  11. 11. Gemede HF, Haki GD, Beyene F, Rakshit SK, Woldegiorgis AZ. Indigenous Ethiopian okra (Abelmoschus esculentus) mucilage: a novel ingredient with functional and antioxidant properties. Food Sci Nutr. 2018;6(3):563-71. https://doi.org/10.1002/fsn3.596
  12. 12. Sharma K, Gupta A, Kumar M, Singh MK, Malik S, Singh B, et al. Effect of integrated nutrient management and foliar spray of bioregulators on growth and yield of okra. Int J Curr Microbiol Appl Sci. 2020;9:344-54. https://doi.org/10.20546/ijcmas.2020.912.044
  13. 13. Wu DT, Nie XR, Shen DD, Li HY, Zhao L, Zhang Q, et al. Phenolic compounds, antioxidant activities and inhibitory effects on digestive enzymes of different cultivars of okra (Abelmoschus esculentus). Molecules. 2020;25(6):1276. https://doi.org/10.3390/molecules25061276
  14. 14. Mabuza M, Tana T. Effects of osmo-priming on germination, growth and green pod yield of okra [Abelmoschus esculentus (L.) Moench] at Luyengo, Middleveld of Eswatini. World J Adv Res Rev. 2021;11(1):29-38. https://doi.org/10.30574/wjarr.2021.11.1.0248
  15. 15. Wang C, Yu YB, Chen TT, Wang ZW, Yan JK. Innovative preparation, physicochemical characteristics and functional properties of bioactive polysaccharides from fresh okra (Abelmoschus esculentus (L.) Moench). Food Chem. 2020;320:126647. https://doi.org/10.1016/j.foodchem.2020.126647
  16. 16. Kaur N, Gandhi A, Mal D, Gharde SK. Impact of seed hydro priming duration on germination and seedling performance of okra (Abelmoschus esculentus L. var. Punjab Suhawani). Ecol Environ Conserv. 2022;29(2):718-25. https://doi.org/10.53550/EEC.2023.v29i02.028
  17. 17. Tania SS, Rhaman MS, Hossain MM. Hydro-priming and halo-priming improve seed germination, yield and yield contributing characters of okra (Abelmoschus esculentus L.). Trop Plant Res. 2020;7(1):86-93. https://doi.org/10.22271/tpr.2020.v7.i1.012
  18. 18. Marthandan V, Geetha R, Kumutha K, Renganathan VG, Karthikeyan A, Ramalingam J. Seed priming: a feasible strategy to enhance drought tolerance in crop plants. Int J Mol Sci. 2020;21(21):8258. https://doi.org/10.3390/ijms21218258
  19. 19. Mukhtar NK, Shamsudin NN, Zain NM, Naher L, Rahman KA, Sidek N. Enhancing okra (Abelmoschus esculentus) growth performance through seed priming. InBIO Web of Conferences 2024 (Vol. 131, p. 05010). EDP Sciences. https://doi.org/10.1051/bioconf/202413105010
  20. 20. Rao KG, Sulladmath UV. Changes in certain chemical constituents associated with maturation of okra (Abelmoschus esculentus (L.) Moench), pods. 1977; 4(1) 37-42. 10.5555/19790370852
  21. 21. Kaur H, Chawla N, Pathak M. Effect of different seed priming treatments and priming duration on biochemical parameters and agronomic characters of okra (Abelmoschus esculentus L.). International Journal of Plant Physiology and Biochemistry. 2015;7(1):1-1.10.5897/IJPPB2015.0224
  22. 22. Balchhaudi A. Enhancement of okra (Abelmoschus esculentus L.) germination through seed priming techniques. Indones J Agric Res. 2023;6(2):137-46. https://doi.org/10.32734/injar.v6i2.13660
  23. 23. Hussain S, Hussain S, Khaliq A, Ali S, Khan I. Physiological, biochemical and molecular aspects of seed priming. In: Priming and pretreatment of seeds and seedlings: implication in plant stress tolerance and enhancing productivity in crop plants. 2019. p. 43-62. https://doi.org/10.1007/978-981-13-8625-1_3
  24. 24. Yuan-Yuan SU, Yong-Jian SU, Ming-Tian WA, Xu-Yi LI, Xiang GU, Rong HU, Jun MA. Effects of seed priming on germination and seedling growth under water stress in rice. Acta Agronomica Sinica. 2010 Nov 1;36(11):1931-40. https://doi.org/10.1016/S1875-2780(09)60085-7
  25. 25. Thakur V, Mal D, Gharde SK, Durlabh DA. Effect of different seed priming treatments on seed germination and seedling vigor of okra (Abelmoschus esculentus L. var. Punjab Suhawani). J Food Chem Nanotechnol. 2023;9(S1):S271-6. https://doi.org/10.17756/jfcn.2023-s1-035
  26. 26. Soga K, Gandhi A, Mal D, Gharde SK. Impact of seed hydropriming duration on growth and yield parameter of okra (Abelmoschus esculentus L. var. Punjab Suhawani). J Food Chem Nanotechnol. 2023;9(S1):S36-43. https://doi.org/10.17756/jfcn.2023-S1-007
  27. 27. Khanal S, Khanal S, Koirala S, Katel S, Mandal HR. Seed priming’s effectiveness in improving okra germination and seedling growth. Asian J Adv Agric Res. 2022;18(2):29-34. https://doi.org/10.9734/AJAAR/2022/v18i230215
  28. 28. Adhikari A, Shrestha A. Effect of primed and un-primed seeds on germination, growth performance and yield in okra (Abelmoschus esculentus (L.) Moench). Turk J Agric Food Sci Technol. 2020;8(8):1686-91. https://doi.org/10.24925/turjaf.v8i8.1686-1691.3460
  29. 29. Adhikari A, Shrestha A. Effect of primed and un-primed seeds on germination, growth performance and yield in okra (Abelmoschus esculentus (L.) Moench). Turk J Agric Food Sci Technol. 2020;8(8):1686-91. https://doi.org/10.24925/turjaf.v8i8.1686-1691.3460
  30. 30. Tania SS, Rhaman MS, Hossain MM. Hydro-priming and halo-priming improve seed germination, yield and yield contributing characters of okra (Abelmoschus esculentus L.). Trop Plant Res. 2020;7(1):86-93. https://doi.org/10.22271/tpr.2020.v7.i1.012
  31. 31. Bereded Sheferie M. Effect of seed priming methods on seed quality of okra (Abelmoschus esculentus (L.) Moench) genotypes. Adv Agric. 2023;2023:3951752. https://doi.org/10.1155/2023/3951752
  32. 32. Lakmali KN, Seran TH. Impact of seed priming with king coconut water on growth and yield of okra (Abelmoschus esculentus L.). J Food Agric. 2022;15(2). https://doi.org/10.4038/jfa.v15i2.5271
  33. 33. Zhang K, Zhang Y, Sun J, Meng J, Tao J. Deterioration of orthodox seeds during ageing: influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiol Biochem. 2021;158:475-85. https://doi.org/10.1016/j.plaphy.2020.11.031
  34. 34. Tiwari TN, Prasad SR, Agrawal DK. Seed priming improves crop growth and yield performance of pigeonpea (Cajanus cajan L.). J Food Legumes. 2019;32(1):9-12. https://doi.org/10.59797/jfl.v32i1.692
  35. 35. Devi LA, Selvam S. Efficacy of seed priming using potassium silicate on okra's (Abelmoschus esculentus var. Raadhika) germination performance. Biochem Cell Arch. 2022;22(2). https://doi.org/10.51470/bca.2022.22.2.4321
  36. 36. Anilkumar L, Malarkodi K. Combined seed enhancement technique involving seed priming and coating for improvised anatomical potential and vigour of okra seeds (Abelmoschus esculentus L.). J Phytol. 2019;11:25-30. https://doi.org/10.25081/jp.2019.v11.3857
  37. 37. AlamA MM, KhanB MR, HossainA MS, SultanaA MS, AnjumA MT. Effects of different priming treatments on the germination and growth of okra (Abelmoschus esculentus L.). J Trop Crop Sci. 2024;11(1). https://doi.org/10.29244/jtcs.11.01.91-96
  38. 38. Namboodiri RV, Bastian D, Anitha P, Rashmi CR. Enhancing okra (Abelmoschus esculentus L. (Moench)) performance: a comparative study of priming across varieties. Int J Plant Soil Sci. 2024;36(12):280-91. https://doi.org/10.9734/ijpss/2024/v36i125202
  39. 39. Bereded Sheferie M. Effect of seed priming methods on seed quality of okra (Abelmoschus esculentus (L.) Moench) genotypes. Adv Agric. 2023;2023:3951752. https://doi.org/10.1155/2023/3951752
  40. 40. Kamboj A, Sangha MK, Devi V, Kumar P, Pathak M, Singla D. Enhancing germination and growth in wild okra genotypes through gibberellic acid priming. Sci Hortic. 2024;334:113332. https://doi.org/10.1016/j.scienta.2024.113332
  41. 41. Rhaman MS, Rauf F, Tania SS, Karim MM, Sagar A, Robin AH, et al. Seed priming and exogenous application of salicylic acid enhance growth and productivity of okra (Abelmoschus esculentus L.) by regulating photosynthetic attributes. J Exp Biol Agric Sci. 2021;9(6):759-69. https://doi.org/10.18006/2021.9(6).759.769
  42. 42. Fomekong MK, Tetang EF, Temegne CN, Atabong PA, Ntsomboh GN, Mir BA, et al. Effect of halopriming on seed germination performance and early seedling establishment in okra (Abelmoschus esculentus (L.) Moench) under saline conditions. Plant Physiol Rep. 2025;30(1):146-59. https://doi.org/10.1007/s40502-024-00818-z
  43. 43. Devkota P, Jagadish Joshi PR, Dhital PR. Efficacy of priming on germination and seedling growth of okra in field condition in Khajura, Nepal. 2025;5(1):35-42. http://doi.org/10.26480/ppsc.01.2025.35.42
  44. 44. Adheena P, Namboodiri RV, Bastian D, Anitha P, Rashmi CR. Optimizing pre-sowing treatments for the enhanced growth, fruit yield and seed quality in Abelmoschus esculentus L. Moench. Int J Plant Soil Sci. 2024;36(2):53-62. https://doi.org/10.9734/IJPSS/2024/v36i24363
  45. 45. Khaskheli GN, Talpur A, Jamali MF, Jamali AR, Lund MM, Khaskheli M. Growth and yield response of okra (Abelmoschus esculentus L.) to various levels of biostimulant. J Appl Res Plant Sci. 2024;5(2):160-9. https://doi.org/10.38211/joarps.2024.05.247
  46. 46. Akpor O, Ajinde A, Ogunnusi T. Effects of priming duration and rhizosphere bacteria metabolite concentration on the germinability of cowpea, soybean, sesame and okra seeds. F1000Res. 2024;12:781. https://doi.org/10.12688/f1000research.137322.5
  47. 47. Mahood HE, Sarropoulou V. Growth, yield and phenolic compounds in okra (Abelmoschus esculentus) with culture condition and germination of seeds elicited by gamma radiation. Int J Veg Sci. 2025;31(3):376-408. https://doi.org/10.1080/19315260.2025.2475832
  48. 48. Zhu XM, Xu R, Wang H, Chen JY, Tu ZC. Structural properties, bioactivities and applications of polysaccharides from okra (Abelmoschus esculentus (L.) Moench): a review. J Agric Food Chem. 2020;68(48):14091-103. https://doi.org/10.1021/acs.jafc.0c04475
  49. 49. Srivastava M, Kathayat K, Mashkey VK. Performance of okra genotypes for different quality parameters. J Food Chem Nanotechnol. 2023;9(S1):S285-90. https://doi.org/10.17756/jfcn.2023-s1-037
  50. 50. Khan FA, Narayan S, Bhat SA, Ashraf S, Fayaz F, Aamir M. Physiological potential of seed germination and seedling vigour of okra and parsley as influenced by seed priming treatments. SKUAST J Res. 2023;25(1):34-42. https://doi.org/10.5958/2349-297X.2023.00004.1

Downloads

Download data is not yet available.