Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Spectral influence on secondary metabolites in Jasminum sambac CO. 1 under red and far-red light

DOI
https://doi.org/10.14719/pst.9788
Submitted
2 June 2025
Published
24-09-2025

Abstract

Light quality plays a pivotal role in plant development and the biosynthesis of secondary metabolite. Jasminum sambac is a medicinally valuable plant known for its diverse phytochemicals with pharmacological significance. This study investigated the impact of red (600-700 nm) and far-red (700-750 nm) light treatments on the phytochemical profile of J. sambac CO. 1 using gas chromatography-mass spectrometry (GC-MS). Plants subjected to 80 % red and 20 % far-red light exhibited significant metabolic shifts compared to untreated controls, with enhanced accumulation of bioactive compounds such as 12-oleanen-3-yl acetate, cis-vaccenic acid and 9,19-cyclolanost-24-en-3-ol, each
associated with anti-inflammatory, antimicrobial, antioxidant and anticancer properties. The findings highlight the role of light in modulating secondary metabolites, offering insights into optimized cultivation strategies for pharmaceutical and aromatic applications. This study underscores the potential of spectral light manipulation to enhance medicinal compound biosynthesis in J. sambac CO. 1.

References

  1. 1. Tharakan ST. Phytochemical and pharmacological properties of five different species of Jasminum. Plant Arch. 2021;21(2):126-36. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no2.022
  2. 2. Jamil AS, Al Ghifari MR. Insight into Jasminum sambac molecular docking interaction with GCK related to diabetes mellitus. IJCB. 2023;2(1):40-48. https://doi.org/10.24198/ijcb.v2i1.45616
  3. 3. Elhawary S, El-Hefnawy H, Mokhtar FA, Sobeh M, Mostafa E, Osman S, et al. Green synthesis of silver nanoparticles using extract of Jasminum officinal L. leaves and evaluation of cytotoxic activity towards bladder (5637) and breast cancer (MCF-7) cell lines. Int J Nanomed. 2020:9771-81. https://doi.org/10.2147/IJN.S269880
  4. 4. Li Y, Wu L, Jiang H, He R, Song S, Su W, et al. Supplementary far-red and blue lights influence the biomass and phytochemical profiles of two lettuce cultivars in plant factory. Molecules. 2021;26(23):7405. https://doi.org/10.3390/molecules26237405
  5. 5. George NM, Foda N, Yassin MA, Eldemerdash M. Exploration of the antioxidant and anticancer properties of methanolic extracts derived from five different Jasminum species, alongside an analysis of the phytoconstituent profile using GC-MS. Bull Chem Soc Ethiop. 2025;39(3):547-60. https://doi.org/10.4314/bcse.v39i3.12
  6. 6. Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. Jvenn: An interactive Venn diagram viewer. BMC Bioinformatics. 2014;15:1-7. https://doi.org/10.1186/1471-2105-15-293
  7. 7. Galal SA, Abd El-All AS, Abdallah MM, El-Diwani HI. Synthesis of potent antitumor and antiviral benzofuran derivatives. Bioorg Med Chem Lett. 2009;19(9):2420-28. https://doi.org/10.1016/j.bmcl.2009.03.069
  8. 8. Shruthi SA. Synthesis and characterisation of substituted quinazoline analogues and their antihistaminic activity. MS [thesis]. Karnataka (India): Rajiv Gandhi University of Health Sciences; 2011.
  9. 9. Santa-María C, López-Enríquez S, Montserrat-de la Paz S, Geniz I, Reyes-Quiroz ME, Moreno M, et al. Update on anti-inflammatory molecular mechanisms induced by oleic acid. Nutrients. 2023;15(1):224. https://doi.org/10.3390/nu15010224
  10. 10. Lim TK. Glycyrrhiza glabra. In: Lim TK, editor. Edible medicinal and non-medicinal plants. Vol. 10: Modified stems, roots, bulbs. Dordrecht (Netherlands): Springer; 2016. p. 354-457. https://doi.org/10.1007/978-94-017-7276-1_18
  11. 11. Müller H. Tetrahydrofuran. In: Ullmann's Encycl. Ind. Chem. Weinheim: Wiley-VCH; 2000. https://doi.org/10.1002/14356007.a26_221
  12. 12. Sullivan CJ, Kuenz A, Vorlop KD. Propanediols. Ullmann's Encycl Ind Chem. 1993;22:163-71. https://doi.org/10.1002/14356007.a22_163.pub2
  13. 13. Tyagi T, Agarwal M. GC-MS analysis of invasive aquatic weed, Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms. Int J Curr Pharm Res. 2017;9(3):111. https://doi.org/10.22159/ijcpr.2017.v9i3.19970
  14. 14. Daffodil E, Uthayakumari F, Mohan V. GC-MS determination of bioactive compounds of Curculigo orchioides Gaertn. Sci Res Rep. 2012;2(3):198-201.
  15. 15. Kumar R, Bhaduri GA. Biorefining of pine cone forest waste: Ultrasound assisted extraction followed with thermal degradation for a zero waste process. Ind Crops Prod. 2025;224:120278. https://doi.org/10.1016/j.indcrop.2024.120278
  16. 16. Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti‐inflammatory property of n‐hexadecanoic acid: Structural evidence and kinetic assessment. Chem Biol Drug Des. 2012;80(3):434-39. https://doi.org/10.1111/j.1747-0285.2012.01418.x
  17. 17. Alencar MVOB, Islam MT, Ali ES, Santos JVO, Paz MFCJ, Sousa JMC, et al. Association of phytol with toxic and cytotoxic activities in an antitumoral perspective: A meta-analysis and systemic review. Anticancer Agents Med Chem. 2018;18(13):1828-37. https://doi.org/10.2174/1871520618666180821113830
  18. 18. Shahar B, Dolma N, Chongtham N. Phytochemical analysis, antioxidant activity and identification of bioactive constituents from three wild medicinally important underutilized plants of Ladakh, India using GCMS and FTIR based metabolomics approach. Food Hum. 2023;1:430-39. https://doi.org/10.1016/j.foohum.2023.06.022
  19. 19. Kumari A, Guleria I, Pathania D, Verma R. Phytochemicals analysis and antibacterial activity of leaf extracts of Populus ciliata Wall. ex Royle. Med Plants-Int J Phytomed Related Ind. 2020;12(1):120-29. https://doi.org/10.5958/0975-6892.2020.00016.7
  20. 20. Wu GJ, Zhang YH, Tan DX, He L, Cao BC, He YP, et al. Synthetic studies on enantioselective total synthesis of cyathane diterpenoids: Cyrneines A and B, glaucopine C, and (+)-allocyathin B2. J Org Chem. 2019;84(6):3223-38. https://doi.org/10.1021/acs.joc.8b03138
  21. 21. Naikwadi PH, Phatangare ND, Mane DV. Active anti-inflammatory potency of γ-sitosterol from Woodfordia floribunda Salisb. J Plant Sci Res. 2022;38(2):1-9. https://doi.org/10.32381/JPSR.2022.38.02.23
  22. 22. Alqahtani FY, Aleanizy FS, Mahmoud AZ, Farshori NN, Alfaraj R, Al-Sheddi ES, et al. Chemical composition and antimicrobial, antioxidant, and anti-inflammatory activities of Lepidium sativum seed oil. Saudi J Biol Sci. 2019;26(5):1089-92. https://doi.org/10.1016/j.sjbs.2018.05.007
  23. 23. Sharma S, Kumari A, Sharma M. Comparative GC-MS analysis of bioactive compounds in methanolic extract of Calotropis gigantea (L) WT Aiton leaf and latex. Int J Pharm Phyto Res. 2016;8(11):1823-27.
  24. 24. Joghee S, Kalarikkal SP, Sundaram GM, Kumar TDA, Chidambaram SB. Chemical profiling and in vitro anti-inflammatory activity of bioactive fraction (s) from Trichodesma indicum (L.) R. Br. against LPS induced inflammation in RAW 264.7 murine macrophage cells. J Ethnopharmacol. 2021;279:114235. https://doi.org/10.1016/j.jep.2021.114235
  25. 25. Luo D, Or TC, Yang CL, Lau AS. Anti-inflammatory activity of iridoid and catechol derivatives from Eucommia ulmoides Oliver. ACS Chem Neurosci. 2014;5(9):855-66. https://doi.org/10.1021/cn5001205
  26. 26. Gopalakrishnan K, Udayakumar R. GC-MS analysis of phytocompounds of leaf and stem of Marsilea quadrifolia (L.). Int J Biochem Res Rev. 2014;4(6):517-26. https://doi.org/10.9734/IJBCRR/2014/11350
  27. 27. Bakrim S, Benkhaira N, Bourais I, Benali T, Lee LH, El Omari N, et al. Health benefits and pharmacological properties of stigmasterol. Antioxidants. 2022;11(10):1912. https://doi.org/10.3390/antiox11101912
  28. 28. Kumar S, Deep A, Narasimhan B. A review on synthesis, anticancer and antiviral potentials of pyrimidine derivatives. Curr Bioact Compd. 2019;15(3):289-303. https://doi.org/10.2174/1573407214666180124160405
  29. 29. Dandekar R, Fegade B, Bhaskar V. GC-MS analysis of phytoconstituents in alcohol extract of Epiphyllum oxypetalum leaves. J Pharmacogn Phytochem. 2015;4(1):148-54.
  30. 30. Tong BC, Barbul A. Cellular and physiological effects of arginine. Mini Rev Med Chem. 2004;4(8):823-32. https://doi.org/10.2174/1389557043403305
  31. 31. Lima TC, Ferreira AR, Silva DF, Lima EO, de Sousa DP. Antifungal activity of cinnamic acid and benzoic acid esters against Candida albicans strains. Nat Prod Res. 2018;32(5):572-75. https://doi.org/10.1080/14786419.2017.1317776
  32. 32. Singariya P, Mourya KK, Kumar P. Identification of some bio-active compounds of isopropyl alcohol extract of Motha dhaman grass by gas chromatography-mass spectrometric analysis. Life Sci Leaflets. 2016;72:122–35.
  33. 33. Kalavathi R. Determination of phyto-constituents in Clerodendrum inerme (L) leaf extract using GC-MS. Asian J Innov Res. 2022;6(2):1-9.
  34. 34. Shaaban MR, Farghaly TA, Alsaedi AM. Synthesis, antimicrobial and anticancer evaluations of novel thiazoles incorporated diphenyl sulfone moiety. Polycycl Aromat Comp. 2022;42(5):2521-37. https://doi.org/10.1080/10406638.2020.1837887
  35. 35. Amarowicz R. Squalene: A natural antioxidant? Eur J Lipid Sci Technol. 2009;111(4):411-12. https://doi.org/10.1002/ejlt.200900102
  36. 36. Syeda AM, Riazunnisa K. Data on GC-MS analysis, in vitro anti-oxidant and anti-microbial activity of the Catharanthus roseus and Moringa oleifera leaf extracts. Data Brief. 2020;29:105258. https://doi.org/10.1016/j.dib.2020.105258
  37. 37. Hassan M, Bala SZ, Bashir M, Waziri PM, Musa Adam R, Umar MA, et al. LC‐MS and GC‐MS profiling of different fractions of Ficus platyphylla stem bark ethanolic extract. J Anal Methods Chem. 2022;2022(1):6349332. https://doi.org/10.1155/2022/6349332
  38. 38. Youssef AM, Maaty DA, Al-Saraireh YM. Phytochemical analysis and profiling of antitumor compounds of leaves and stems of Calystegia silvatica (Kit.) Griseb. Molecules. 2023;28(2):630. https://doi.org/10.3390/molecules28020630
  39. 39. Rao MRK, Anisha G. Preliminary phytochemical and GC MS study of one medicinal plant Carissa spinarum. Indo Am J Pharm Res. 2018;8(03):414.
  40. 40. Kumar V, Sharma A, Thukral AK, Bhardwaj R. Phytochemical profiling of methanolic extracts of medicinal plants using GC-MS. Int J Res Dev Pharm L Sci. 2016;5(3):2153-58.
  41. 41. Hamouda AF, Farawilla T-LM, Attafi IM, Khardali IA, Attafi MA, Oraiby ME, et al. Screening pilot study of fruit seed compositions by GC-MS and their potential scenario anti ACE2 and 2rh1 receptors as a recycling possibility in the coronavirus pandemic. J Clin Med Res. 2021;2(02):1-65. https://doi.org/10.46889/JCMR.2021.2202
  42. 42. Yue Y, Zhang Q, Wang J. Integrated gas chromatograph-mass spectrometry (GC/MS) and MS/MS-based molecular networking reveals the analgesic and anti-inflammatory phenotypes of the sea slater Ligia exotica. Mar Drugs. 2019;17(7):395. https://doi.org/10.3390/md17070395
  43. 43. Alizadeh M, Jalal M, Hamed K, Saber A, Kheirouri S, Pourteymour Fard Tabrizi F, et al. Recent updates on anti-inflammatory and antimicrobial effects of furan natural derivatives. J Inflamm Res. 2020:451-63. https://doi.org/10.2147/JIR.S262132
  44. 44. Arango-Daza JC, Lluna-Galán C, Izquierdo-Aranda L, Cabrero-Antonino JR, Adam R. Heterogeneous Pd-catalyzed efficient synthesis of imidazolones via dehydrogenative condensation between ureas and 1, 2-diols. ACS Catal. 2022;12(12):6906-22. https://doi.org/10.1021/acscatal.2c01423
  45. 45. Burton GW, Traber MG. Vitamin E: Antioxidant activity, biokinetics, and bioavailability. Annu Rev Nutri. 1990;10(1):357-82. https://doi.org/10.1146/annurev.nu.10.070190.002041
  46. 46. Ibrahim EA, Aly HF, Baker D, Mahmoud K, El-Baz FK. Marine algal sterol hydrocarbon with anti-inflammatory, anticancer and anti-oxidant properties. Int J Pharm Bio Sci. 2016;7(3):392-98.
  47. 47. Rivas MÁ, Casquete R, Dos Santos MTPG, Benito MJ. An overview of the antifungal potential for aromatic plant extracts in agriculture and the food industry: A comprehensive analysis focusing on the Rubus, Cistus and Quercus genera against fungal infections of crops and food. Int J Food Microbiol. 2025:111209. https://doi.org/10.1016/j.ijfoodmicro.2025.111209
  48. 48. Punetha S, Vuppu S. GC–MS, FTIR and physico-chemical analysis of phytochemicals from Vellore floral waste and its in-silico studies. Chem Pap. 2023;77(11):6873-905. https://doi.org/10.1007/s11696-023-02984-0

Downloads

Download data is not yet available.