Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Molecular profiling and genetic diversity in sugarcane (Saccharum officinarum L) hybrid cultivars by RAPD markers

DOI
https://doi.org/10.14719/pst.9819
Submitted
4 June 2025
Published
11-09-2025
Versions

Abstract

Genetic diversity is fundamental to crop improvement, especially in genetically complex crops like sugarcane (Saccharum officinarum L.). The objective of this study was to assess the genetic diversity and relationships among 22 elite sugarcane hybrid cultivars using Random Amplified Polymorphic DNA (RAPD) markers, in order to identify genetically diverse parental lines for effective breeding strategies. Fifteen RAPD primers produced a total of 129 bands, out of which 108 (83.32%) were polymorphic, indicating a high level of variability. The band sizes ranged from 325 to 2858 base pairs, and the number of bands per primer varied from four to twelve. Genetic similarity coefficients among cultivars ranged from 0.27 to 0.98, suggesting a broad genetic spectrum. Cluster analysis using the UPGMA method revealed that some cultivars with similar parentages grouped together, while others with different parentages were clustered in the same group, demonstrating that pedigree alone may not reflect true genetic diversity. Co 6907 was identified as a genetically distinct cultivar. The study emphasizes the value of molecular profiling for identifying genetically diverse parents, broadening the genetic base, and optimizing sugarcane breeding programs for enhanced productivity.

References

  1. 1. Senthil Kumar S, Govindaraj P, Appunu C. Morphological and molecular characterization of high biomass IGH, ISH and Saccharum hybrids. Sugar Tech. 2015;17(3):243-251. https://doi.org/10.1007/s12355-014-0327-0
  2. 2. Kumar R, Appunu C, Anna Durai A, Premachandran M.N, Raffee Viola V, Bakshi Ram, Mahadevaiah C, Mintu Ram Meena, Manjunatha T. Genetic confirmation and field performance comparison for yield and quality among advanced generations of Erianthus arundinaceus, E. bengalense and Saccharum spontaneum cyto-nuclear genome introgressed sugarcane intergeneric hybrids. Sugar Tech. 2015:17(4):379–385. https://doi.org/10.1007/s12355-014-0333-2
  3. 3. Kumar R, Appunu C, Anna Durai A, Mohanraj K, Premachandran M.N, Bakshi Ram, Mahadevaiah C. Molecular identification and genetic improvement vis-à-vis comparison of yield and quality in different generations of Erianthus arundinaceus, E. bengalense and Saccharum spontaneum cyto-nuclear genome introgressed sugarcane. Indian J Biotechnol. 2015:14:249-255. http://hdl.handle.net/123456789/31817
  4. 4. Govindaraj P, Priya Sindhu PS, Appunu C, Parthiban S, Senthilkumar S. Genetic diversity analysis among interspecific and intergeneric hybrids of Saccharum spp. using STMS markers. Res. Crops. 2013;14(3): 915-920
  5. 5. Govindaraj P, Ramesh R, Appunu C, Swapna S, Priji PJ. DNA fingerprinting of subtropical sugarcane (Saccharum spp) genotypes using sequence tagged microsatellites sites (STMS) markers. Plant Archives. 2012;12(1):347-52.
  6. 6. Govindaraj P, Sindhu R, Balamurugan A, Appunu C. Molecular diversity in sugarcane hybrids (Saccharum spp. complex) grown in Peninsular and East Coast Zones of Tropical India. Sugar Tech 2011; 13(3):206-213. https://doi.org/10.1007/s12355-011-0095-z
  7. 7. Sindhu R, Govindaraj P, Balamurugan A, Appunu C. 2011. Genetic diversity in sugarcane hybrids (Saccharum spp complex) grown in tropical India based on STMS markers. J Plant Biochem. Biotechnol. 2011; 20(1):118-124. https://doi.org/10.1007/s13562-011-0036-7
  8. 8. D’Hont A, Lu Y, Feldmann P, Glaszmann JC. Cytoplasmic diversity in sugar cane revealed by heterologous probes. Sugarcane. 1993;1(18):12–5.
  9. 9. Al-Janabi S, McClelland M, Petersen C, Sobral B. Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae. Theor Appl Genet. 1994;88:933–44. https://doi.org/10.1007/BF00220799
  10. 10. Lu Y, D’Hont A, Walker D, Rao P, Feldmann P, Glaszmann JC. Relationships among ancestral species of sugarcane revealed with RFLP using single copy maize nuclear probes. Euphytica. 1994;78:7–18. https://doi.org/10.1007/BF00021393
  11. 11. Burnquist W, Sorrelles M, Tanksley S. Characterization of genetic variability in Saccharum germplasm by means of restriction fragment length polymorphism (RFLP) analysis. In: Proceedings XXI Congress of the International Society of Sugar Cane Technologists. Bangkok (Thailand); 1995. p. 355–66.
  12. 12. Sobral B, Braga D, LaHood E, Keim P. Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinae Griseb. subtribe of the Andropogoneae Dumort. tribe. Theor Appl Genet. 1994;87:843–53. https://doi.org/10.1007/BF00221137
  13. 13. Harvey M, Botha F. Use of PCR-based methodologies for the determination of DNA diversity between Saccharum varieties. Euphytica. 1996;89(2):257–65. https://doi.org/10.1007/BF00034614
  14. 14. Nair NV, Nair S, Sreenivasan T, Mohan M. Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genet Resour Crop Evol. 1999;46:73–9. https://doi.org/10.1023/A:1008696808645
  15. 15. Zhang H, Liu X, He C, Zheng C. Random amplified DNA polymorphism of Nicotiana tabacum L. cultivars. Biol Plant. 2005;49:605–7. https://doi.org/10.1007/s10535-005-0056-z
  16. 16. Ali MA, Seyal MT, Awan SI, Shahid Niaz SN, Shiraz Ali SA, Amjad Abbas AA. Hybrid authentication in upland cotton through RAPD analysis. Aust J Crop Sci. 2008;2(3):141–9.
  17. 17. Khan H, Akter J, Islam M, Sajib A, Ashraf N, Haque S. Microsatellite markers for determining genetic identities and genetic diversity among jute cultivars. Aust J Crop Sci. 2008;1(3):97–107.
  18. 18. Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias VM, Chen H, et al. Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Genet Genomics. 2003;269:406–19. https://doi.org/10.1007/s00438-003-0849-8
  19. 19. Aitken K, Jackson P, McIntyre C. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo (eo) logous linkage groups in a sugarcane cultivar. Theor Appl Genet. 2005;110:789–801. https://doi.org/10.1007/s00122-004-1813-7
  20. 20. Srivastava S, Gupta P. Low level of genetic diversity in sugarcane hybrids of India as assessed by RAPD markers. In Guilin, P R China; p. 574–8.
  21. 21. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19(1):11–5.
  22. 22. Rohlf FJ. NTSYS-pc: numerical taxonomy and multivariate analysis system. Applied Biostatistics; 1992.
  23. 23. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89(3):583–90. https://doi.org/10.1093/genetics/89.3.583
  24. 24. Fernandez E, Peteire B, Pino B, Corinde MT, Leonard H. Determination of genetic diversity in sugarcane hybrids by RAPD markers. Rev Prot Vegetal. 14:81–5.
  25. 25. Kawar P, Devarumath R, Nerkar Y. Use of RAPD markers for assessment of genetic diversity in sugarcane cultivars. Indian J. Biotechnol. 2009;8:67-71.
  26. 26. Garker R, Kale A, Bharud R, Pawar S, Naik R. Assessment of genetic diversity in sugarcane hybrid cultivars by RAPD markers. In International symposium on new paradigms in sugarcane research.2012. p. 295.
  27. 27. Nair N, Selvi A, Sreenivasan T, Pushpalatha K. Molecular diversity in Indian sugarcane cultivars as revealed by randomly amplified DNA polymorphisms. Euphytica. 2002;127:219–25. https://doi.org/10.1023/A:1020234428681
  28. 28. Zhang H, Li F, Zhong H, Yang Q, He S. Identification of sugarcane interspecies hybrids with RAPDs. Afr J Biotechnol. 2008;7(8):1072-1074.

Downloads

Download data is not yet available.