Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

Antioxidant and antimicrobial activities of the Mizo traditional medicinal plant, Helicia excelsa and chemical investigation on its bioactive metabolites

DOI
https://doi.org/10.14719/pst.9870
Submitted
6 June 2025
Published
22-10-2025 — Updated on 30-10-2025
Versions

Abstract

The study analysed the leaf extract of Helicia excelsa for the antioxidant, antifungal and antibacterial activities, as well as the chemical components. The plant extract contains appreciable amounts of total antioxidant (26.4 mg ascorbic acid equivalent/g), flavonoid (60 mg quercetin equivalent/g) and phenolic (11.7 mg gallic acid equivalent/g) compounds. The half-maximal inhibitory concentration (IC50) against 1,1-Diphenyl-2-picrylhydrazyl (DPPH) was 17.79± 0.64 µg/mL. It also showed concentration-dependent antioxidant activity by ferric reduction assay. It was effective against fungal species including Fusarium solani, F. keratoplasticum, F. oxysporum and Pyricularia oryzae, showing best activity against P. oryzae. It exerted antibacterial activity against both Gram-negative and Gram-positive species with highest efficacy against Pseudomonas aeruginosa and Bacillus cereus. The minimum inhibitory concentrations were 7.81 mg/mL for B. cereus, B. subtilis, Klebsiella pneumoniae and Salmonella typhimurium; while it was 15.63 mg/mL for P. aeruginosa and Staphylococcus aureus. MBC/MIC ratio showed that the plant extract exhibited bactericidal effects against B. cereus, B. subtilis, P. aeruginosa and S. aureus and bacteriostatic effects against K. pneumoniae and S. typhimurium. Alkaloids, flavonoids, phenols, carbohydrates, glycosides, saponins, proteins and amino acids and phytosterols were detected as the major secondary metabolites. 3-O-methyl-d-glucose was identified as the principle bioactive compound. The findings substantiate H. excelsa as an important medicinal plant that could be a potential source of pharmacologically useful molecules.

References

  1. 1. Aware CB, Patil DN, Suryawanshi SS, Mali PR, Rane MR, Gurav RG, et al. Natural bioactive products as promising therapeutics: A review of natural product-based drug development. S Afr J Bot. 2022;151:512-28. https://doi.org/10.1016/j.sajb.2022.05.028
  2. 2. El-Saadony MT, Saad AM, Mohammed DM, Korma SA, Alshahrani MY, Ahmed AE, et al. Medicinal plants: bioactive compounds, biological activities, combating multidrug-resistant microorganisms and human health benefits-a comprehensive review. Front Immunol. 2025;16:1491777. https://doi.org/10.3389/fimmu.2025.1491777
  3. 3. Rysz J, Franczyk B, Rysz-Górzyńska M, Gluba-Brzózka A. Ageing, age-related cardiovascular risk and the beneficial role of natural components intake. Int J Mol Sci. 2021;23(1):183. https://doi.org/10.3390/ijms23010183
  4. 4. Riaz M, Khalid R, Afzal M, Anjum F, Fatima H, Zia S, et al. Phytobioactive compounds as therapeutic agents for human diseases: A review. Food Sci Nutr. 2023;11(6):2500-29. https://doi.org/10.1002/fsn3.3308
  5. 5. Ding D, Wang B, Zhang X, Zhang J, Zhang H, Liu X, et al. The spread of antibiotic resistance to humans and potential protection strategies. Ecotoxicol Environ Safety. 2023;254:114734. https://doi.org/10.1016/j.ecoenv.2023.114734
  6. 6. Aslam B, Khurshid M, Arshad MI, Muzammil S, Rasool M, Yasmeen N, et al. Antibiotic resistance: one health one world outlook. Front Cell Infect Microbiol. 2021;11:771510.
  7. https://doi.org/10.3389/fcimb.2021.771510
  8. 7. Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, et al. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol. 2023;21(5):280-95. https://doi.org/10.1038/s41579-022-00820-y
  9. 8. Tang KW, Millar BC, Moore JE. Antimicrobial resistance (AMR). Br J Biomed Sci. 2023;80:11387. https://doi.org/10.3389/bjbs.2023.11387
  10. 9. Guedes BN, Krambeck K, Durazzo A, Lucarini M, Santini A, Oliveira MB, et al. Natural antibiotics against antimicrobial resistance: sources and bioinspired delivery systems. Braz J Microbiol. 2024;55(3):2753-66. https://doi.org/10.1007/s42770-024-01410-1
  11. 10. Angelini P. Plant-derived antimicrobials and their crucial role in combating antimicrobial resistance. Antibiotics. 2024;13(8):746. https://doi.org/10.3390/antibiotics13080746
  12. 11. Meti MD, Xu Y, Xie J, Chen Y, Wu Z, Liu J, et al. Multi-spectroscopic studies on the interaction between traditional Chinese herb, helicid with pepsin. Mol Biol Rep. 2018;45:1637-46. https://doi.org/10.1007/s11033-018-4306-5
  13. 12. Jagetia GC, Zoremsiami J. Anticancer activity of Helicia nilagirica Bedd. in mice transplanted with Dalton's lymphoma. Int J Complement Altern Med. 2018;11(2):112-23. https://doi.org/10.15406/ijcam.2018.11.00380
  14. 13. Li XY, Qi WW, Zhang YX, Jiang SY, Yang B, Xiong L, et al. Helicid ameliorates learning and cognitive ability and activities cAMP/PKA/CREB signaling in chronic unpredictable mild stress rats. Biol Pharm Bull. 2019;42(7):1146-54. https://doi.org/10.1248/bpb.b19-00012
  15. 14. Liu Y, Cai Y, Bai X, Zhao X, Meng X, Zhang X, et al. A sensitive on-tissue chemical derivatization-mass spectrometry imaging method for the quantitative visualization of helicid in mice. Int J Mass Spectrom. 2023;488:117038. https://doi.org/10.1016/j.ijms.2023.117038
  16. 15. Sharma HK, Chhangte L, Dolui AK. Traditional medicinal plants in Mizoram, India. Fitoterapia. 2001;72(2):146-61. https://doi.org/10.1016/S0367-326X(00)00278-1
  17. 16. Azwanida NN. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants. 2015;4(196):2167-0412.
  18. 17. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337-41.
  19. https://doi.org/10.1006/abio.1999.4019
  20. 18. Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64(4):555-9. https://doi.org/10.1016/S0308-8146(98)00102-2
  21. 19. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965;16(3):144-58.https://doi.org/10.5344/ajev.1965.16.3.144
  22. 20. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-200. https://doi.org/10.1038/1811199a0
  23. 21. Oyaizu M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet. 1986;44(6):307-15. https://doi.org/10.5264/eiyogakuzashi.44.307
  24. 22. Grover RK, Moore JD. Toximetric studies of fungicides against the brown rot organisms, Sclerotinia fructicola and S. laxa. Phytopathology. 1962;52:876-9.
  25. 23. Erhonyota C, Edo GI, Onoharigho FO. Comparison of poison plate and agar well diffusion method determining the antifungal activity of protein fractions. Acta Ecol Sin. 2023;43(4):684-9. https://doi.org/10.1016/j.chnaes.2022.08.006
  26. 24. Devillers J, Steiman R, Seigle-Murandi F. The usefulness of the agar-well diffusion method for assessing chemical toxicity to bacteria and fungi. Chemosphere. 1989;19(10-11):1693-700. https://doi.org/10.1016/0045-6535(89)90512-2
  27. 25. Elshikh M, Ahmed S, Funston S, Dunlop P, McGaw M, Marchant R, et al. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol Lett. 2016;38:1015-19.
  28. https://doi.org/10.1007/s10529-016-2079-2
  29. 26. Evans WC, Trease GC. Trease and Evans' Pharmacognosy. 16th ed. London: Balliere Tindal; 2009:356, 378.
  30. 27. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 1981 to 2019. J Nat Prod. 2020;83(3):770-803.
  31. https://doi.org/10.1021/acs.jnatprod.9b01285
  32. 28. Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, et al. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023;11:1158198.
  33. https://doi.org/10.3389/fchem.2023.1158198
  34. 29. Zhu L, Luo M, Zhang Y, Fang F, Li M, An F, et al. Free radical as a double-edged sword in disease: Deriving strategic opportunities for nanotherapeutics. Coord Chem Rev. 2023;475:214875. https://doi.org/10.1016/j.ccr.2022.214875
  35. 30. Nwozo OS, Effiong EM, Aja PM, Awuchi CG. Antioxidant, phytochemical and therapeutic properties of medicinal plants: A review. Int J Food Prop. 2023;26(1):359-88. https://doi.org/10.1080/10942912.2022.2157425
  36. 31. Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, et al. Ethnobotany and the role of plant natural products in antibiotic drug discovery. Chem Rev. 2020;121(6):3495-560. https://doi.org/10.1021/acs.chemrev.0c00922
  37. 32. Zoremsiami J, Jagetia GC. Phytochemical analysis and free radical scavenging activity of Helicia nilagirica in-vitro. Asian J Pharm Clin Res. 2014;7(5):246-9.
  38. 33. Mariani F, Tammachote R, Kusuma IW, Chavasiri W, Prasongsuk HP. Phenolic content and biological activities of ethanol extracts from medicinal plants in East Kalimantan, Indonesia. Sains Malays. 2021;50(8):2193-205.
  39. https://doi.org/10.17576/jsm-2021-5008-05
  40. 34. Tyers M, Wright GD. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol. 2019;17(3):141-55. https://doi.org/10.1038/s41579-018-0141-x
  41. 35. Li S, Jiang S, Jia W, Guo T, Wang F, Li J, et al. Natural antimicrobials from plants: Recent advances and future prospects. Food Chem. 2024;432:137231. https://doi.org/10.1016/j.foodchem.2023.137231
  42. 36. Law JW, Ser HL, Khan TM, Chuah LH, Pusparajah P, Chan KG, et al. The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front Microbiol. 2017;8:3. https://doi.org/10.3389/fmicb.2017.00003
  43. 37. Srivastava V, Patra K, Pai H, Aguilar-Pontes MV, Berasategui A, Kamble A, et al. Molecular dialogue during host manipulation by the vascular wilt fungus Fusarium oxysporum. Annu Rev Phytopathol. 2024;62(1):97-126.
  44. https://doi.org/10.1146/annurev-phyto-021722-034823
  45. 38. Richter MF, Hergenrother PJ. The challenge of converting Gram-positive-only compounds into broad-spectrum antibiotics. Ann N Y Acad Sci. 2019;1435(1):18-38. https://doi.org/10.1111/nyas.13598
  46. 39. Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomat Investig Dent. 2020;7(1):105-9.
  47. https://doi.org/10.1080/26415275.2020.1796674
  48. 40. Jeon JH, Kim MG, Lee HS. Acaricidal activities of bicyclic monoterpene ketones from Artemisia iwayomogi against Dermatophagoides spp. Exp Appl Acarol. 2014;62:415-22. https://doi.org/10.1007/s10493-013-9739-x
  49. 41. Moradi KM, Khoradmehr A, Dehghani FA, Tavassoli A, Mohammad RF, Mohebbi G, et al. Induction of apoptosis by ethanol, methanol and ethyl acetate extracts from Cyperus rotundus leaf on in vitro human ovarian, cervix and breast cancer cell lines. Int J Fertil Steril. 2024;19(3):326-36.
  50. 42. Roslizawaty R, Gholib G, Rahmi N, Khairan K, Idroes R, Syafruddin S, et al. Identification, screening and analysis of secondary metabolite content in methanol extracts of ant nests plant tubers from Aceh, Indonesia. Biodiversitas. 2023;24(12):6934-41. https://doi.org/10.13057/biodiv/d241255
  51. 43. Chóez-Guaranda I, Espinoza-Lozano F, Reyes-Araujo D, Romero C, Manzano P, Galarza L, et al. Chemical characterization of Trichoderma spp. extracts with antifungal activity against cocoa pathogens. Molecules. 2023;28(7):3208.
  52. https://doi.org/10.3390/molecules28073208
  53. 44. Sathasivampillai SV, Sebastian PR, Varatharasan S. Medicinal values of a Saiva ritual plant - Bauhinia tomentosa L. Front Life Sci Relat Technol. 2020;1(2):63-8.
  54. 45. Singh PK, Kannan D, Gopinath SC, Raman P. Purification and characterization of 3-O-methyl-D-glucose from the seed coat of Vigna mungo (L.) Hepper. Proc Biochem. 2024;143:83-97. https://doi.org/10.1016/j.procbio.2024.04.021
  55. 46. Sindhuja G, Agnes AM. Combination of selected medicinal plants using ethanol extract by GC-MS analysis. Mass Spectrom Lett. 2025;16(1):22-30.

Downloads

Download data is not yet available.