Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Stock scion relationship: A review from the ornamental plant perspective

DOI
https://doi.org/10.14719/pst.9919
Submitted
8 June 2025
Published
23-10-2025

Abstract

Grafting is a widely used horticultural technique that enhance plant performance, especially in ornamental species with poor rooting ability. It involves joining a desirable scion with a compatible and vigorous rootstock, as seen in crops such as rose, bougainvillea, jasmine, hibiscus and cactus. This method is primarily adopted to combine desirable traits such as growth vigour, disease resistance, adaptability stress tolerance and aesthetic appeal. Grafting scions from mature, flowering plants onto juvenile rootstocks retains their maturity, allowing earlier flowering. Inter-specific grafting merges traits for ornamental breeding and hybrids. Although practiced for centuries, the precise physiological and molecular interactions between the rootstock and scion remained unclear until recent advances in plant science. Modern research, particularly through next-generation sequencing, has confirmed that genetic and molecular exchanges occur across the graft union. These interactions significantly influence the scion’s physiology, including nutrient uptake, growth patterns, stress resistance and flowering behaviour. As graft incompatibility can result from hormonal imbalance, phenolic accumulation, or poor vascular connection between scion and rootstock. It highlights recent findings on morphological, physio-chemical and molecular mechanisms involved in rootstock-scion communication. Understanding these complex interactions enables the development of superior grafted ornamentals with enhanced aesthetic qualities, resilience and extended blooming periods. This integrated perspective is crucial for improving the efficiency and creativity in ornamental plant production and providing a foundation for future research into grafting-induced trait enhancement.

References

  1. 1. Adiga JD, Reddy B, Kulkarni B. Studies on propagation of certain ornamental plants and commercial flower crops under protection. J Ornam Hortic. 2004;7(3-4):325-30.
  2. 2. Rasool A, Mansoor S, Bhat K, Hassan G, Baba TR, Alyemeni MN, et al. Mechanisms underlying graft union formation and rootstock scion interaction in horticultural plants. Front Plant Sci. 2020;11:590847. https://doi.org/10.3389/fpls.2020.590847
  3. 3. Kwon O-H, Choi H-G, Kim S-J, Kim W-H. Assessment of four-seasonal quality and yield of cut flower roses grafted onto Rosa rootstocks. Agriculture. 2022;12(11):1848. https://doi.org/10.3390/agriculture12111848
  4. 4. Melnyk CW, Schuster C, Leyser O, Meyerowitz EM. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Curr Biol. 2015;25(10):1306-18. https://doi.org/10.1016/j.cub.2015.03.032
  5. 5. Martínez-Ballesta MC, Alcaraz-López C, Muries B, Mota-Cadenas C, Carvajal M. Physiological aspects of rootstock-scion interactions. Sci Hortic. 2010;127(2):112-8. https://doi.org/10.1016/j.scienta.2010.08.002
  6. 6. Zrig A, Belhadj S, Tounekti T, Khemira H, Elsheikh SYS. Rootstock-scion interaction effect on improving salt tolerance in fruit trees. In: Zrig A, editor. Plant abiotic stress responses and tolerance mechanisms. IntechOpen; 2023. https://doi.org/10.5772/intechopen.108817
  7. 7. Simões IM, Lopes JC, Schmildt ER, Ferreira A, Baptista JO, de Araujo CP, et al. Grafting between species of the genus Handroanthus for the production of multi-colored flower canopies. Sci For. 2021;49:132-7. https://doi.org/10.18671/scifor.v49n132.07
  8. 8. Nichat VG. A novel grafting technique: Tender twig grafting (TTG) in Bougainvillea Comm. ex Juss. Plantae Scientia. 2018;1(2):44-7.https://doi.org/10.32439/ps.v1i02.44-47
  9. 9. Blada I, Panea T. Improvement of grafting procedures for the ornamental species: II. Abies concolor [(Gord. & Glend.) Lindl]. Ann For Res. 2012;55(1):25-31.
  10. 10. Balaj NX, Zogaj R. Production seedlings of roses by grafting with bud for hybrid teas and climbing roses cultivars. Res J Agric Sci. 2011;43(2).
  11. 11. Perumal R, Prabhu M, Kannan M, Srinivasan S. Taxonomy and grafting of ornamental cacti: A review. Agric Rev. 2021;42(4):445-9. https://doi.org/10.18805/ag.R-2053
  12. 12. Ljubojević M, Božanić Tanjga B. Rose (Rosa× hybrida L.) breeding-An old flower for a new age. In: Breeding of ornamental crops: Annuals and cut flowers. Springer; 2025. p. 591-638 https://doi.org/10.1007/978-3-031-78653-2_19
  13. 13. Miginiac E, Lavigne C. Jasminum grandiflorum: En. Jasmine; Fr. Jasmin; Ge. Jasmin. In: Handbook of flowering. CRC Press; 2019. p. 395-8.
  14. 14. Marappan K, Mariyappillai A. Pink Kakada (Jasminum multiflorum): A potential loose flower crop for commercial production. Indian J Hortic. 70(1):11-5.
  15. 15. Zhang J, Chen S, Liu R, Jiang J, Chen F, Fang W. Chrysanthemum cutting productivity and rooting ability are improved by grafting. Sci World J. 2013;2013(1):286328. https://doi.org/10.1155/2013/286328
  16. 16. Nower AA, Hamza EM. Production of Gardenia jasminoides scions via tissue culture for grafting on Gardenia thunbergia under greenhouse conditions. J Appl Sci Res. 2013;9:3118-28.
  17. 17. Leonhardt KW. Intergeneric graft compatibility within the family Araliaceae. HortTechnology. 1996;6(3):254-6. https://doi.org/10.21273/HORTTECH.6.3.254
  18. 18. Bayat N, Naderi R, Maidani AR. Greenhouse screening of cactus rootstock and scion for the best rootstock-scion combination. Crop Res. 2015;50(1-3):125-30.
  19. 19. Health EPoP, Bragard C, Baptista P, Chatzivassiliou E, Di Serio F, Jaques Miret JA, et al. Commodity risk assessment of bonsai plants from China consisting of Pinus parviflora grafted on Pinus thunbergii. EFSA J. 2022;20(2):e07077. https://doi.org/10.2903/j.efsa.2022.7077
  20. 20. Weatherhead I. Causes of graft failure in Sitka spruce, Picea sitchensis (Bong.) Carr. University of Reading; 1986
  21. 21. Flaishman MA, Loginovsky K, Golobowich S, Lev-Yadun S. Arabidopsis thaliana as a model system for graft union development in homografts and heterografts. J Plant Growth Regul. 2008;27:231-9. https://doi.org/10.1007/s00344-008-9050-y
  22. 22. Miller H, Barnett J. The structure and composition of bead-like projections on Sitka spruce callus cells formed during grafting and in culture. Ann Bot. 1993;72(5):441-8. https://doi.org/10.1006/anbo.1993.1130
  23. 23. Moore R. A model for graft compatibility-incompatibility in higher plants. Am J Bot. 1984;71(5):752-8. https://doi.org/10.1002/j.1537-2197.1984.tb14182.x
  24. 24. Jeffree C, Yeoman M. Development of intercellular connections between opposing cells in a graft union. New Phytol. 1983;93(4):491-509. https://doi.org/10.1111/j.1469-8137.1983.tb02701.x
  25. 25. Kollmann R, Glockmann C. Studies on graft unions. I. Plasmodesmata between cells of plants belonging to different unrelated taxa. Protoplasma. 1985;124(3):224-35. https://doi.org/10.1007/BF01290774
  26. 26. Jeffree C, Yeoman M, Parkinson M, Holden M. The chemical basis of cell to cell contact and its possible role in differentiation. 1987;16:73-86.
  27. 27. Yeoman M, Brown R. Implications of the formation of the graft union for organisation in the intact plant. Ann Bot. 1976;40(6):1265-76. https://doi.org/10.1093/oxfordjournals.aob.a085247
  28. 28. Ehlers K, Kollmann R. Primary and secondary plasmodesmata: structure, origin and functioning. Protoplasma. 2001;216:1-30. https://doi.org/10.1007/BF02680127
  29. 29. Kollmann R, Glockmann C. Studies on graft unions: III. On the mechanism of secondary formation of plasmodesmata at the graft interface. Protoplasma. 1991;165(1):71-85. https://doi.org/10.1007/BF01322278
  30. 30. Kollmann R, Yang S, Glockmann C. Studies on graft unions: II. Continuous and half plasmodesmata in different regions of the graft interface. Protoplasma. 1985;126:19-29. https://doi.org/10.1007/BF01287669
  31. 31. Schulz A. Physiological control of plasmodesmal gating. In: Plasmodesmata: Structure, function, role in cell communication. Springer; 1999. p. 173-204 https://doi.org/10.1007/978-3-642-60035-7_11
  32. 32. Aloni R. Differentiation of vascular tissues. Annu Rev Plant Physiol. 1987;38(1):179-204. https://doi.org/10.1146/annurev.pp.38.060187.001143
  33. 33. Mosse B. Graft-incompatibility in fruit trees: with particular reference to its underlying causes. UK: Commonwealth Bureau of Horticulture and Plantation Crops; 1962.
  34. 34. Stoddard FL, McCully M. Histology of the development of the graft union in pea roots. Can J Bot. 1979;57(14):1486-501. https://doi.org/10.1139/b79-185
  35. 35. de Stigter Hd. Parallelism between the transport of 14C-photosynthates and the flowering response in grafted Silene armeria L. Plant Physiol Res Centre; 1966.
  36. 36. Golecki B, Schulz A, Thompson GA. Translocation of structural P proteins in the phloem. Plant Cell. 1999;11(1):127-40. https://doi.org/10.1105/tpc.11.1.127
  37. 37. Clark AM, Jacobsen KR, Bostwick DE, Dannenhoffer JM, Skaggs MI, Thompson GA. Molecular characterization of a phloem-specific gene encoding the filament protein, phloem protein 1 (PP1), from Cucurbita maxima. Plant J. 1997;12(1):49-61. https://doi.org/10.1046/j.1365-313X.1997.12010049.x
  38. 38. Tiedemann R, Carstens-Behrens U. Influence of grafting on the phloem protein patterns in Cucurbitaceae. I. Additional phloem exudate proteins in Cucumis sativus grafted on two Cucurbita species. J Plant Physiol. 1994;143(2):189-94. https://doi.org/10.1016/S0176-1617(11)81685-8
  39. 39. Dinant S, Clark AM, Zhu Y, Vilaine F, Palauqui JC, Kusiak C, et al. Diversity of the superfamily of phloem lectins (phloem protein 2) in angiosperms. Plant Physiol. 2003;131(1):114-28. https://doi.org/10.1104/pp.013086
  40. 40. Walz C, Juenger M, Schad M, Kehr J. Evidence for the presence and activity of a complete antioxidant defence system in mature sieve tubes. Plant J. 2002;31(2):189-97. https://doi.org/10.1046/j.1365-313X.2002.01348.x
  41. 41. Gomez G, Torres H, Pallas V. Identification of translocatable RNA-binding phloem proteins from melon, potential components of the long-distance RNA transport system. Plant J. 2005;41(1):107-16. https://doi.org/10.1111/j.1365-313X.2004.02278.x
  42. 42. Mattsson J, Ckurshumova W, Berleth T. Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol. 2003;131(3):1327-39. https://doi.org/10.1104/pp.013623
  43. 43. Shimomura T, Fuzihara K. Physiological study of graft union formation in cactus II. Role of auxin on vascular connection between stock and scion. J Jpn Soc Hortic Sci. 1977;45(4):397-406. https://doi.org/10.2503/jjshs.45.397
  44. 44. Haslam E. Vegetable tannins. In: Biochemistry of plant phenolics. Springer; 1979. p. 475-523. https://doi.org/10.1007/978-1-4684-3372-2_15
  45. 45. Buchloh G. The lignification in stock-scion junctions and its relation to compatibility. In: Pidham JB, editor. Phenolics in plants in health and disease. Oxford: Pergamon Press; 1960. p. 67-71
  46. 46. Quessada M-P, Macheix J-J. Characterization of a peroxidase specifically involved in lignification, in relation to grafting incompatibility in apricot. Physiol Veg. 1984;22(5):533-40. 1984;22(5):533-40.
  47. 47. Cookson S, Clemente Moreno MJ, Hevin C, Nyamba Mendome L, Delrot S, Magnin N, et al. Heterografting with nonself rootstocks induces genes involved in stress responses at the graft interface when compared with autografted controls. J Exp Bot. 2014;65(9):2473-81. https://doi.org/10.1093/jxb/eru145
  48. 48. Shivran M, Sharma N, Dubey AK, Singh SK, Sharma N, Sharma RM, et al. Scion-rootstock relationship: Molecular mechanism and quality fruit production. Agriculture. 2022;12(12):2036. https://doi.org/10.3390/agriculture12122036
  49. 49. Qi W, Zhang C, Wang W, Cao Z, Li S, Li H, et al. Comparative transcriptome analysis of different heat stress responses between self-root grafting line and heterogeneous grafting line in rose. Hortic Plant J. 2021;7(3):243-55. https://doi.org/10.1016/j.hpj.2021.03.004
  50. 50. Zhou Y, Hayat F, Yao J, Tian X, Wang Y, Zhang X, et al. Size-controlling interstocks affect growth vigour by downregulating photosynthesis in eight-year-old 'Red Fuji' apple trees. Eur J Hortic Sci. 2021;86:146-55.
  51. 51. Kurotani K-i, Huang C, Okayasu K, Suzuki T, Ichihashi Y, Shirasu K, et al. Discovery of the interfamily grafting capacity of Petunia, a floricultural species. Hortic Res. 2022;9:uhab056. https://doi.org/10.1093/hr/uhab056
  52. 52. Stegemann S, Bock R. Exchange of genetic material between cells in plant tissue grafts. Science. 2009;324(5927):649-51. https://doi.org/10.1126/science.1170397
  53. 53. Hjellström M, Olsson AS, Engström P, Söderman E. Constitutive expression of the water deficit-inducible homeobox gene ATHB7 in transgenic Arabidopsis causes a suppression of stem elongation growth. Plant Cell Environ. 2003;26(7):1127-36. https://doi.org/10.1046/j.1365-3040.2003.01037.x
  54. 54. Rubluo A, Marín-Hernández T, Duval K, Vargas AN, Márquez-Guzmán J. Auxin induced morphogenetic responses in long-term in vitro subcultured Mammillaria san-angelensis Sánchez-Mejorada (Cactaceae). Sci Hortic. 2002;95(4):341-9. https://doi.org/10.1016/S0304-4238(02)00040-7
  55. 55. Aloni B, Cohen R, Karni L, Aktas H, Edelstein M. Hormonal signaling in rootstock-scion interactions. Sci Hortic. 2010;127(2):119-26. https://doi.org/10.1016/j.scienta.2010.09.003
  56. 56. Sima X, Jiang B, Fang J, He Y, Fang Z, Km SK. Identification by deep sequencing and profiling of conserved and novel hickory microRNAs involved in the graft process. Plant Biotechnol Rep. 2015;9:115-24. https://doi.org/10.1007/s11816-015-0349-4
  57. 57. Klee HJ, Muskopf YM, Gasser CS. Cloning of an Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants. Mol Gen Genet. 1987;210:437-42. https://doi.org/10.1007/BF00327194
  58. 58. Shimomura T, Fujihara K. Prevention of auxin-induced vascular differentiation in wound callus by surface-to-surface adhesion between calluses of stock and scion in cactus grafts. Plant Cell Physiol. 1978;19(5):877-86. https://doi.org/10.1093/oxfordjournals.pcp.a075663
  59. 59. Sharma A, Zheng B. Molecular responses during plant grafting and its regulation by auxins, cytokinins and gibberellins. Biomolecules. 2019;9(9):397. https://doi.org/10.3390/biom9090397
  60. 60. Israelsson M, Sundberg B, Moritz T. Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. Plant J. 2005;44(3):494-504. https://doi.org/10.1111/j.1365-313X.2005.02547.x
  61. 61. Oh S, Park S, Han K-H. Transcriptional regulation of secondary growth in Arabidopsis thaliana. J Exp Bot. 2003;54(393):2709-22. https://doi.org/10.1093/jxb/erg304
  62. 62. Melnyk CW, Gabel A, Hardcastle TJ, Robinson S, Miyashima S, Grosse I. Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. Proc Natl Acad Sci. 2018;115(10):E2447-56. https://doi.org/10.1073/pnas.1718263115
  63. 63. Kumar RS, Ji G, Guo H, Zhao L, Zheng B. Over-expression of a grafting-responsive gene from hickory increases abiotic stress tolerance in Arabidopsis. Plant Cell Rep. 2018;37:541-52. https://doi.org/10.1007/s00299-018-2250-4
  64. 64. Yuan H, Zhao L, Qiu L, Xu D, Tong Y, Guo W, et al. Transcriptome and hormonal analysis of grafting process by investigating the homeostasis of a series of metabolic pathways in Torreya grandis cv. Merrillii. Ind Crops Prod. 2017;108:814-23. https://doi.org/10.1016/j.indcrop.2017.07.026
  65. 65. Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, et al. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci. 2008;105(25):8790-4. https://doi.org/10.1073/pnas.0712307105
  66. 66. Marhavý P, Vanstraelen M, De Rybel B, Zhaojun D, Bennett MJ, Beeckman T, et al. Auxin reflux between the endodermis and pericycle promotes lateral root initiation. EMBO J. 2013;32(1):149-58. https://doi.org/10.1038/emboj.2012.303
  67. 67. Notaguchi M, Wolf S, Lucas WJ. Phloem-mobile Aux/IAA transcripts target to the root tip and modify root architecture. J Integr Plant Biol. 2012;54(10):760-72. https://doi.org/10.1111/j.1744-7909.2012.01155.x
  68. 68. Pitaksaringkarn W, Matsuoka K, Asahina M, Miura K, Sage-Ono K, Ono M, et al. XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems. Plant J. 2014;80(4):604-14. https://doi.org/10.1111/tpj.12654
  69. 69. Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, et al. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 2005;19(16):1855-60. https://doi.org/10.1101/gad.1331305
  70. 70. Zhao C, Avci U, Grant EH, Haigler CH, Beers EP. XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant J. 2008;53(3):425-36. https://doi.org/10.1111/j.1365-313X.2007.03350.x
  71. 71. Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N, Ohme-Takagi M, et al. Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. Proc Natl Acad Sci. 2011;108(38):16128-32. https://doi.org/10.1073/pnas.1110443108
  72. 72. Mo Z, Feng G, Su W, Liu Z, Peng F. Transcriptomic analysis provides insights into grafting union development in pecan (Carya illinoinensis). Genes. 2018;9(2):71. https://doi.org/10.3390/genes9020071
  73. 73. Liu N, Yang J, Fu X, Zhang L, Tang K, Guy KM, et al. Genome-wide identification and comparative analysis of grafting-responsive mRNA in watermelon grafted onto bottle gourd and squash rootstocks by high-throughput sequencing. Mol Genet Genomics. 2016;291:621-33. https://doi.org/10.1007/s00438-015-1132-5
  74. 74. Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol. 2013;199(3):639-49. https://doi.org/10.1111/nph.12291
  75. 75. Ohashi-Ito K, Bergmann DC. Regulation of the Arabidopsis root vascular initial population by Lonesome Highway. Development. 2007;134(16):2959-68. https://doi.org/10.1242/dev.006296

Downloads

Download data is not yet available.