Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Exploring ALS (Acetolactate synthase) gene as a target for herbicide resistance through CRISPR/Cas mediated genome editing

DOI
https://doi.org/10.14719/pst.9965
Submitted
10 June 2025
Published
10-08-2025
Versions

Abstract

The increasing global population, combined with escalating climate change, has necessitated the adoption of innovative agricultural practices to ensure sustainable food production. Traditional crop cultivation system relies on conventional weed management practices that are labour and resource intensive. To address this challenge, the development of herbicide-resistant (HR) crops has emerged as a critical solution. CRISPR/Cas-based genome editing has revolutionized HR crop development, offering precision and efficiency over conventional breeding and transgenic approaches. The acetolactate synthase (ALS) gene, which is essential for biosynthesis of branched-chain amino acids (BCAAs) such as leucine, isoleucine and valine, serves as a key target for ALS-inhibiting herbicides to control broad spectrum of weed species. Notably, several weed species were identified with natural mutations in ALS gene that confers strong level of resistance to different ALS-inhibiting herbicides. Advanced genome editing technologies like CRISPR/Cas9, CRISPR/Cas mediated base editing (BE) and prime editing (PE) have been successfully utilized to mimic these natural mutations or introduce novel mutations in ALS gene, thereby creating heritable herbicide resistance in various crops. In this review, we summarize the remarkable achievements reported so far in the development of herbicide-resistant crops specifically by targeting the ALS gene using CRISPR/Cas genome editing approach. Furthermore, we propose forward-looking perspectives on integrating multiplex gene editing and gene stacking. The synergy between CRISPR (Clustered Regularly Interspaced Palindromic Repeat) technology and advanced phenotyping platforms holds significant promise for next generation of climate-resilient herbicide resistance crop varieties. These insights offer a valuable roadmap for researchers to design tailored, sustainable weed management strategies and accelerate the global transition towards precision agriculture.

References

  1. 1. Shahbazi F, Shahbazi S, Zare D. Losses in agricultural produce: causes and effects on food security. Food Energy Secur. 2025;14(3):e70086. https://doi.org/10.1002/fes3.70086
  2. 2. Berhan M, Bekele D. Review of major cereal crops production losses, quality deterioration of grains by weeds and its prevention in Ethiopia. Asian J Adv Res. 2021;11(4):93–104. https://doi.org/10.1007/s42690 022 00885 5
  3. 3. Zhou Q, Liu W, Zhang Y, Liu KK. Action mechanisms of acetolactate synthase inhibiting herbicides. Pestic Biochem Physiol. 2007;89(2):89–96. https://doi.org/10.1016/j.pestbp.2007.04.004
  4. 4. Rajak BK, Rani P, Mandal P, Chhokar RS, Singh N, Singh DV. Emerging possibilities in the advancement of herbicides to combat acetyl CoA carboxylase inhibitor resistance. Front Agron. 2023;5:1218824. https://doi.org/10.3389/fagro.2023.1218824
  5. 5. Nakka S, Godar AS, Wani PS, Thompson CR, Peterson DE, Roelofs J, Jugulam M. Physiological and molecular characterization of hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor resistance in Palmer amaranth (Amaranthus palmeri S. Wats.). Front Plant Sci. 2017;8:555. https://doi.org/10.3389/fpls.2017.00555
  6. 6. Chen J, Yu Q, Patterson E, Sayer C, Powles S. Dinitroaniline herbicide resistance and mechanisms in weeds. Front Plant Sci. 2021;12:634018. https://doi.org/10.3389/fpls.2021.634018
  7. 7. Endo M, Toki S. Creation of herbicide tolerant crops by gene targeting. J Pesticide Sci. 2013;38(2):49–59. https://doi.org/10.1584/jpestics.D12 073
  8. 8. Croughan TP, inventor; Louisiana State University, assignee. Herbicide resistant rice. US patent 5,773,704. 1998.
  9. 9. Gealy DR, Mitten DH, Rutger JN. Gene flow between red rice (Oryza sativa) and herbicide resistant rice (O. sativa): implications for weed management. Weed Technol. 2003;17(3):627–45. https://doi.org/10.1614/WT02 100
  10. 10. Shoba D, Raveendran M, Manonmani S, Utharasu S, Dhivyapriya D, Subhasini G, et al. Development and genetic characterization of a novel herbicide (Imazethapyr) tolerant mutant in rice (Oryza sativa L.). Rice. 2017;10:1–2. https://doi.org/10.1186/s12284 017 0151 8
  11. 11. Beckie HJ, Hall LM. Genetically modified herbicide resistant (GMHR) crops a two edged sword? An Americas perspective on development and effect on weed management. Crop Protect. 2014;66:40–5. https://doi.org/10.1016/j.cropro.2014.08.014
  12. 12. Achary VM, Sheri V, Manna M, Panditi V, Borphukan B, Ram B, et al. Overexpression of improved EPSPS gene results in field level glyphosate tolerance and higher grain yield in rice. Plant Biotechnol J. 2020;18(12):2504–19. https://doi.org/10.1111/pbi.13428
  13. 13. Quirasco M, Schoel B, Chhalliyil P, Fagan J, Gálvez A. Real time and conventional PCR detection of Liberty Link® rice varieties and transgenic soy in rice sampled in the Mexican and American retail markets. Anal Bioanal Chem. 2008;392:395–404. https://doi.org/10.1007/s00216 008 2265 8
  14. 14. Dong H, Huang Y, Wang K. The development of herbicide resistance crop plants using CRISPR/Cas9 mediated gene editing. Genes. 2021;12(6):912. https://doi.org/10.3390/genes12060912
  15. 15. Kaul T, Sony SK, Bharti J, Motelb KF, Verma R, Thangaraj A, et al. CRISPR genome editing brings global food security into the first lane: enhancing nutrition and stress resilience in crops. In: Next generation plant breeding approaches for stress resilience in cereal crops. Singapore: Springer; 2022:285–344. https://doi.org/10.1007/978-981-19-1445-4_9
  16. 16. Dezfulian MH, Foreman C, Jalili E, Pal M, Dhaliwal RK, Roberto DK, et al. Acetolactate synthase regulatory subunits play divergent and overlapping roles in branched chain amino acid synthesis and Arabidopsis development. BMC Plant Biol. 2017;17:1–3. https://doi.org/10.1186/s12870-017-1022-6
  17. 17. He B, Hu Y, Wang W, Yan W, Ye Y. The progress towards novel herbicide modes of action and targeted herbicide development. Agronomy. 2022;12(11):2792. https://doi.org/10.3390/agronomy12112792
  18. 18. Lonhienne T, Low YS, Garcia MD, Croll T, Gao Y, Wang Q, et al. Structures of fungal and plant acetohydroxyacid synthases. Nature. 2020;586(7828):317–21. https://doi.org/10.1038/s41586-020-2514-3
  19. 19. Green JM. Review of glyphosate and ALS inhibiting herbicide crop resistance and resistant weed management. Weed Technol. 2007;21(2):547–58. https://doi.org/10.1614/WT-06-004.1
  20. 20. Jin M, Chen L, Deng XW, Tang X. Development of herbicide resistance genes and their application in rice. Crop J. 2022;10(1):26–35. https://doi.org/10.1016/j.cj.2021.05.007
  21. 21. Han H, Yu Q, Purba E, Li M, Walsh M, Friesen S, et al. A novel amino acid substitution Ala 122 Tyr in ALS confers high level and broad resistance across ALS inhibiting herbicides. Pest Manag Sci. 2012;68(8):1164–70. https://doi.org/10.1002/ps.3278
  22. 22. Riar DS, Norsworthy JK, Srivastava V, Nandula V, Bond JA, Scott RC. Physiological and molecular basis of acetolactate synthase inhibiting herbicide resistance in barnyardgrass (Echinochloa crus galli). J Agric Food Chem. 2013;61(2):278–89. https://doi.org/10.1021/jf304675j
  23. 23. Deng W, Yang Q, Zhang Y, Jiao H, Mei Y, Li X, et al. Cross resistance patterns to acetolactate synthase (ALS) inhibiting herbicides of flixweed (Descurainia sophia L.) conferred by different combinations of ALS isozymes with a Pro 197 Thr mutation or a novel Trp 574 Leu mutation. Pestic Biochem Physiol. 2017;136:41–5. https://doi.org/10.1016/j.pestbp.2016.08.006
  24. 24. Liu W, Yuan G, Du L, Guo W, Li L, Bi Y, et al. A novel Pro197Glu substitution in acetolactate synthase (ALS) confers broad spectrum resistance across ALS inhibitors. Pestic Biochem Physiol. 2015;117:31–8. https://doi.org/10.1016/j.pestbp.2014.10.005
  25. 25. Brosnan JT, Vargas JJ, Breeden GK, Grier L, Aponte RA, Tresch S, et al. A new amino acid substitution (Ala 205 Phe) in acetolactate synthase (ALS) confers broad spectrum resistance to ALS inhibiting herbicides. Planta. 2016;243:149–59. https://doi.org/10.1007/s00425-015-2399-9
  26. 26. Sada Y, Ikeda H, Yamato S, Kizawa S. Characterization of sulfonylurea resistant Schoenoplectus juncoides having a target site Asp376Glu mutation in the acetolactate synthase. Pestic Biochem Physiol. 2013;107(1):106–11. https://doi.org/10.1016/j.pestbp.2013.05.013
  27. 27. Li J, Li M, Gao X, Fang F. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS inhibiting herbicides in crabgrass (Digitaria sanguinalis). Pest Manag Sci. 2017;73(12):2538–43. https://doi.org/10.1002/ps.4651
  28. 28. Wang Q, Ge LA, Zhao N, Zhang L, You L, Wang D, et al. A Trp 574 Leu mutation in the acetolactate synthase (ALS) gene of Lithospermum arvense L. confers broad spectrum resistance to ALS inhibitors. Pestic Biochem Physiol. 2019;158:12–7. https://doi.org/10.1016/j.pestbp.2019.04.001
  29. 29. Laplante J, Rajcan I, Tardif FJ. Multiple allelic forms of acetohydroxyacid synthase are responsible for herbicide resistance in Setaria viridis. Theor Appl Genet. 2009;119:577–85. https://doi.org/10.1007/s00122-009-1067-5
  30. 30. Ganguly S, Athreya AG, Patel D. Role of CRISPR Cas and its application in mitigating plant stress. In: Gene editing in plants: CRISPR Cas and its applications. Singapore: Springer; 2024. p. 281–308. https://doi.org/10.1007/978-981-99-8529-6_10
  31. 31. Das D, Singha DL, Paswan RR, Chowdhury N, Sharma M, Reddy PS, et al. Recent advancements in CRISPR/Cas technology for accelerated crop improvement. Planta. 2022;255(5):109. https://doi.org/10.1007/s00425-022-03894-3
  32. 32. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology. 1987;169(12):5429-33. https://doi.org/10.1128/jb.169.12.5429-5433.1987
  33. 33. Karvelis T, Gasiunas G, Young J, Bigelyte G, Silanskas A, Cigan M, et al. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biology. 2015;16:1-3. https://doi.org/10.1186/s13059-015-0818-7
  34. 34. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546):186-91. https://doi.org/10.1038/nature14299
  35. 35. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-21. https://doi.org/10.1126/science.1225829
  36. 36. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014;343(6176):1247997. https://doi.org/10.1126/science.1247997
  37. 37. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. https://doi.org/10.1126/science.1258096
  38. 38. Rani R, Yadav P, Barbadikar KM, Baliyan N, Malhotra EV, Singh BK, et al. CRISPR/Cas9: a promising way to exploit genetic variation in plants. Biotechnology Letters. 2016;38:1991-2006. https://doi.org/10.1007/s10529-016-2195-z
  39. 39. Li C, Zhang R, Meng X, Chen S, Zong Y, Lu C, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nature Biotechnology. 2020;38(7):875-82. https://doi.org/10.1038/s41587-019-0393-7
  40. 40. Lapinaite A, Knott GJ, Palumbo CM, Lin-Shiao E, Richter MF, Zhao KT, et al. DNA capture by a CRISPR-Cas9–guided adenine base editor. Science. 2020;369(6503):566-71. https://doi.org/10.1126/science.abb1390
  41. 41. Mikhaylova EV, Kuluev BR, Gerashchenkov GA, Chemeris DA, Garafutdinov RR, Kuluev AR, et al. Prime-editing methods and pegRNA design programs. Molecular Biology. 2024;58(1):17-32. https://doi.org/10.1134/S0026893324010084
  42. 42. Saeed F, Manzoor H, Bukhat S, Azeem F, Rasul S. Multiplex genome editing in plants. In: Genome Editing for Crop Improvement: Theory and Methodology. GB: CABI; 2025:68-87. https://doi.org/10.1079/9781800622517.0006
  43. 43. Sharma V, Thakur M, Maan SS, Verma K, Thakur A, Penna S. In vitro mutagenesis: a non-invasive technology for effective crop improvement to assure food and nutritional security—current trends, advancements and future perspectives. Journal of Plant Growth Regulation. 2025;44(2):484-507. https://doi.org/10.1007/s00344-024-11484-8
  44. 44. Usovsky M, Gamage VA, Meinhardt CG, Dietz N, Triller M, Basnet P, et al. Loss-of-function of an α-SNAP gene confers resistance to soybean cyst nematode. Nature Communications. 2023;14(1):7629. https://doi.org/10.1038/s41467-023-43295-y
  45. 45. Cai Y, Liang Y, Shi H, Cui J, Prakash S, Zhang J, et al. Creating yellow seed Camelina sativa with enhanced oil accumulation by CRISPR‐mediated disruption of Transparent Testa 8. Plant Biotechnology Journal. 2024;22(10):2773-84. https://doi.org/10.1111/pbi.14403
  46. 46. Nie H, Shi Y, Geng X, Xing G. CRISPR/Cas9-mediated targeted mutagenesis of tomato polygalacturonase gene (SlPG) delays fruit softening. Frontiers in Plant Science. 2022;13:729128. https://doi.org/10.3389/fpls.2022.729128
  47. 47. Liu C, Wang C, Wang K. Generating clonal seeds from hybrid rice with CRISPR-Cas9. In: CRISPR-Cas Methods: Volume 2. New York: Springer US; 2021:207-19. https://doi.org/10.1007/978-1-0716-1657-4_14
  48. 48. Zhao Y, Gao J, Wang X, Rashid MA, Wu Z, Ma Z, et al. Elite haplotype of STRONG1 enhances rice yield by improving lodging resistance, panicle and plant architecture. Nature Communications. 2025;16(1):5894. https://doi.org/10.1038/s41467-025-60604-9
  49. 49. Ramasamy SP, Rathnasamy SA, Manickam S, Rajagopalan V, Palaniswamy R, Mohanavel V, et al. CRISPR/Cas9 mutagenesis generated elite alleles of a novel yield gene An-1 leading to increased grain number in rice (Oryza sativa L.). Current Plant Biology. 2025;100511. https://doi.org/10.1016/j.cpb.2025.100511
  50. 50. Li T, Liu B, Chen CY, Yang B. TALEN-mediated homologous recombination produces site-directed DNA base change and herbicide-resistant rice. Journal of Genetics and Genomics. 2016;43(5):297-305. https://doi.org/10.1016/j.jgg.2016.03.005
  51. 51. Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, et al. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular Plant. 2016;9(4):628-31. https://doi.org/10.1016/j.molp.2016.01.001
  52. 52. Endo M, Mikami M, Toki S. Biallelic gene targeting in rice. Plant Physiology. 2016;170(2):667-77. https://doi.org/10.1104/pp.15.01663
  53. 53. Butt H, Eid A, Ali Z, Atia MA, Mokhtar MM, Hassan N, et al. Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Frontiers in Plant Science. 2017;8:1441. https://doi.org/10.3389/fpls.2017.01441
  54. 54. Ali Z, Shami A, Sedeek K, Kamel R, Alhabsi A, Tehseen M, et al. Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice. Communications Biology. 2020;3(1):44. https://doi.org/10.1038/s42003-020-0768-9
  55. 55. Li S, Zhang Y, Xia L, Qi Y. CRISPR‐Cas12a enables efficient biallelic gene targeting in rice. Plant Biotechnology Journal. 2019;18(6):1351. https://doi.org/10.1111/pbi.13295
  56. 56. Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology. 2017;35(5):441-3. https://doi.org/10.1038/nbt.3833
  57. 57. Zhang R, Chen S, Meng X, Chai Z, Wang D, Yuan Y, et al. Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing. Science China Life Sciences. 2021;64:1624-33. https://doi.org/10.1007/s11427-020-1800-5
  58. 58. Xu R, Kong F, Qin R, Li J, Liu X, Wei P. Development of an efficient plant dual cytosine and adenine editor. Journal of Integrative Plant Biology. 2021;63(9):1600-5. https://doi.org/10.1111/jipb.13146
  59. 59. Kuang Y, Li S, Ren B, Yan F, Spetz C, Li X, et al. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms. Molecular Plant. 2020;13(4):565-72. https://doi.org/10.1016/j.molp.2020.01.010
  60. 60. Xu W, Zhang C, Yang Y, Zhao S, Kang G, He X, et al. Versatile nucleotides substitution in plant using an improved prime editing system. Molecular Plant. 2020;13(5):675-8. https://doi.org/10.1016/j.molp.2020.03.012
  61. 61. Butt H, Rao GS, Sedeek K, Aman R, Kamel R, Mahfouz M. Engineering herbicide resistance via prime editing in rice. Plant Biotechnol J. 2020;18(12):2370. https://doi.org/10.1111/pbi.13399
  62. 62. Hua K, Jiang Y, Tao X, Zhu JK. Precision genome engineering in rice using prime editing system. Plant Biotechnol J. 2020;18(11):2167. https://doi.org/10.1111/pbi.13395
  63. 63. Ren Q, Sretenovic S, Liu S, Tang X, Huang L, He Y, et al. PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nat Plants. 2021;7(1):25-33. https://doi.org/10.1038/s41477-020-00827-4
  64. 64. Butt H, Ramirez JL, Mahfouz M. Synthetic evolution of herbicide resistance using a T7 RNAP–based random DNA base editor. Life Sci Alliance. 2022;5(12). http://doi.org/10.26508/lsa.202201538
  65. 65. Ran Y, Patron N, Kay P, Wong D, Buchanan M, Cao YY, et al. Zinc finger nuclease‐mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template. Plant Biotechnol J. 2018;16(12):2088-101. https://doi.org/10.1111/pbi.12941
  66. 66. Zong Y, Song Q, Li C, Jin S, Zhang D, Wang Y, et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol. 2018;36(10):950-3. https://doi.org/10.1038/nbt.4261
  67. 67. Zhang R, Liu J, Chai Z, Chen S, Bai Y, Zong Y, et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat Plants. 2019;5(5):480-5. https://doi.org/10.1038/s41477-019-0405-0
  68. 68. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 2015;169(2):931-45. https://doi.org/10.1104/pp.15.00793
  69. 69. Jiang YY, Chai YP, Lu MH, Han XL, Lin Q, Zhang Y, et al. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol. 2020;21:1-0. https://doi.org/10.1186/s13059-020-02170-5
  70. 70. Li Y, Zhu J, Wu H, Liu C, Huang C, Lan J, et al. Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize. Crop J. 2020;8(3):449-56. https://doi.org/10.1016/j.cj.2019.10.001
  71. 71. Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, et al. Cas9-guide RNA directed genome editing in soybean. Plant Physiol. 2015;169(2):960-70. https://doi.org/10.1104/pp.15.00783
  72. 72. Perroud PF, Guyon-Debast A, Veillet F, Kermarrec MP, Chauvin L, Chauvin JE, et al. Prime editing in the model plant Physcomitrium patens and its potential in the tetraploid potato. Plant Sci. 2022;316:111162. https://doi.org/10.1016/j.plantsci.2021.111162
  73. 73. Butler NM, Baltes NJ, Voytas DF, Douches DS. Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci. 2016;7:1045. https://doi.org/10.3389/fpls.2016.01045
  74. 74. Veillet F, Perrot L, Chauvin L, Kermarrec MP, Guyon-Debast A, Chauvin JE, et al. Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int J Mol Sci. 2019;20(2):402. https://doi.org/10.3390/ijms20020402
  75. 75. Chen Y, Wang Z, Ni H, Xu Y, Chen Q, Jiang L. CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci China Life Sci. 2017;60(5):520-3. https://doi.org/10.1007/s11427-017-9021-5
  76. 76. Tian S, Jiang L, Cui X, Zhang J, Guo S, Li M, et al. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep. 2018;37:1353-6. https://doi.org/10.1007/s00299-018-2299-0
  77. 77. Wu J, Chen C, Xian G, Liu D, Lin L, Yin S, et al. Engineering herbicide‐resistant oilseed rape by CRISPR/Cas9‐mediated cytosine base‐editing. Plant Biotechnol J. 2020;18(9):1857. https://doi.org/10.1111/pbi.13368
  78. 78. Kang BC, Woo JW, Kim ST, Bae SJ, Choi M, Kim JS, et al. Guidelines for C to T base editing in plants: base-editing window, guide RNA length, and efficient promoter. Plant Biotechnol Rep. 2019;13:533-41. https://doi.org/10.1007/s11816-019-00572-x
  79. 79. Bottero E, Gómez C, Stritzler M, Tajima H, Frare R, Pascuan C, et al. Generation of a multi-herbicide-tolerant alfalfa by using base editing. Plant Cell Rep. 2022;41(2):493-5. https://doi.org/10.1007/s00299-021-02827-w
  80. 80. Oz MT, Altpeter A, Karan R, Merotto A, Altpeter F. CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Front Genome Ed. 2021;3:673566. https://doi.org/10.3389/fgeed.2021.673566
  81. 81. Butt H, Jamil M, Wang JY, Al-Babili S, Mahfouz M. Engineering plant architecture via CRISPR/Cas9–mediated alteration of strigolactone biosynthesis. BMC Plant Biol. 2018;18(1):174. https://doi.org/10.1186/s12870-018-1387-1
  82. 82. Bandyopadhyay A, Kancharla N, Nain V. RNA-guided genome editing for targeted gene modifications in crop plants. In: Roychoudhury A, Tripathi DK, editors. CRISPR/Cas genome editing. Academic Press; 2021:89-110. https://doi.org/10.1016/B978-0-12-821636-8.00013-3
  83. 83. Yu QH, Wang B, Li N, Tang Y, Yang S, Yang T, et al. CRISPR/Cas9‐induced targeted mutagenesis and gene replacement to generate long‐shelf life tomato lines. Sci Rep. 2017;7:11874. https://doi.org/10.1038/s41598-017-12262-1
  84. 84. Volante A, Cavallari E, Tondelli A, Francia E. The application of genome editing to enhance rice disease resistance: a review of recent progress. Int J Mol Sci. 2023;24(3):2073. https://doi.org/10.3390/ijms24032073
  85. 85. Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, et al. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant. 2016;9(4):628-31. https://doi.org/10.1016/j.molp.2016.01.001
  86. 86. Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol. 2017;35(5):441-3. https://doi.org/10.1038/nbt.3833
  87. 87. Mushtaq M, Sakina A, Wani SH, Shikari AB, Tripathi P, Zaid A, et al. Harnessing genome editing techniques to engineer disease resistance in rice. Front Plant Sci. 2019;10:1039. https://doi.org/10.3389/fpls.2019.01039
  88. 88. Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, Li T, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol. 2019;37(11):1344-50. https://doi.org/10.1038/s41587-019-0267-z
  89. 89. Das A, Soubam D, Singh PK, Thakur S, Singh NK, Sharma TR. A novel blast resistance gene Pi54 rh cloned from rice line Tetep confers broad-spectrum resistance to Magnaporthe oryzae. Funct Integr Genomics. 2012;12(2):215-28. https://doi.org/10.1007/s10142-012-0253-3
  90. 90. Yaqoob U, Jan R, Chaurasia B, Zargar SM, Deshmukh R, Sonah H, et al. Prospects of editing innate immunity-related genes to enhance disease resistance in rice: an overview. Physiol Mol Biol Plants. 2023;29(2):183-203. https://doi.org/10.1007/s12298-023-01259-1
  91. 91. Antony G, Zhou J, Huang S, Li T, Liu B, White F, et al. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell. 2010;22(11):3864-76. https://doi.org/10.1105/tpc.110.078964
  92. 92. Wang C, Zhang X, Fan Y, Gao Y, Zhu Q, Zheng C, et al. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant. 2015;8(2):290-302. https://doi.org/10.1016/j.molp.2014.10.010
  93. 93. Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J. 2014;12(6):797-807. https://doi.org/10.1111/pbi.12200
  94. 94. Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One. 2016;11(4):e0154027. https://doi.org/10.1371/journal.pone.0154027
  95. 95. Xu Z, Xu X, Gong Q, Li Z, Li Y, Wang S, et al. Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TAL effector targets in rice. Mol Plant. 2019;12(11):1434-46. https://doi.org/10.1016/j.molp.2019.09.001

Downloads

Download data is not yet available.