Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Advances in analytical techniques for phytochemical identification and quality control: A comprehensive review

DOI
https://doi.org/10.14719/pst.9998
Submitted
11 June 2025
Published
26-11-2025

Abstract

Phytochemistry, the study of plant chemicals, has been a longstanding tradition since ancient times, when plants were used as medicines. Early scientists, such as Dioscorides and Theophrastus, made significant contributions to its development and in the 20th century, the introduction of advanced technologies led to substantial progress in this field. Herbal medicine has gained popularity following the advent of technologies such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy, which enable the identification and characterization of bioactive ingredients or phytochemicals. Scientific study is crucial for the authenticity, purity and efficacy of herbal medicines, particularly in light of the growing global demand for them. Herbal medication development follows standardized processes and principles, from plant identification to pharmacological testing. Quality control entails a thorough evaluation that includes identity, validity, physical and chemical characteristics, detection of adulterants and detection of contamination. The World Health Organisation (WHO) and Pharmacopoeias contribute to global standards for herbal drugs, where novel and emerging tools, such as: High-Performance Liquid Chromatography (HPLC), Gas Chromatography-Mass Spectrometry (GC-MS), Deoxyribonucleic Acid (DNA) barcoding and several other advanced techniques, aid in the process. This paper focuses on highlighting some of these contemporary analytical procedures that enable researchers to meet the professional requirements for developing herbal medications. Modern quality control in phytochemistry employs advanced methods, including thermal and chromatographic analysis. These techniques help identify plant chemicals more accurately, making it easier to develop and deliver effective medicines. This paper also provides practical insights for professionals in industries related to herbal medicines, natural products and manufacturers of phytochemical-based products, helping them stay informed about the latest technologies. Moreover, it will help develop guidelines and standards for the quality control and safety assessment of phytochemicals, supporting policymakers and regulatory bodies in making informed and updated decisions regarding the use and marketing of phytochemical products.

References

  1. 1. Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L. Extraction, isolation and characterization of bioactive compounds from plants' extracts. Afr J Tradit Complement Altern Med. 2011;8(1):1–10.
  2. 2. Xue Y, Hu W, Hu X. Thermal analysis of natural fibers. In: Jaffe M, Menczel JD, editors. Thermal analysis of textiles and fibers. Cambridge: Woodhead Publishing; 2020. p. 105–32. https://doi.org/10.1016/B978-0-08-100572-9.00007-0
  3. 3. Peltonen L. Practical guidelines for the characterization and quality control of pure drug nanoparticles and nano-cocrystals in the pharmaceutical industry. Adv Drug Deliv Rev. 2018;131:101–15. https://doi.org/10.1016/j.addr.2018.06.009
  4. 4. Alvarenga LM, Xavier TP, Barrozo MAS, Bacelos MS, Lira TS. Dynamic analysis of reaction kinetics of carton packaging pyrolysis. In: Karimi IA, Srinivasan R, editors. Computer aided chemical engineering. Vol. 31. Amsterdam: Elsevier; 2012. p. 180–4. https://doi.org/10.1016/B978-0-444-59507-2.50028-7
  5. 5. Costa RS, Pinheiro WBdS, Arruda MSP, Costa CEF, Converti A, Costa RMR, et al. Thermoanalytical and phytochemical study of the cupuassu (Theobroma grandiflorum Schum.) seed by-product in different processing stages. J Therm Anal Calorim. 2022;147:275–84. https://doi.org/10.1007/s10973-020-10347-0
  6. 6. Sinha D, Odoh UE, Ganguly S, Muhammad M, Chatterjee M, Chikeokwu I, et al. Phytochemistry, history and progress in drug discovery. In: Egbuna C, Rudrapal M, Tijjani H, editors. Phytochemistry, computational tools and databases in drug discovery. 1st ed. Amsterdam: Elsevier; 2023. p. 1–26. https://doi.org/10.1016/B978-0-323-90593-0.00001-0
  7. 7. Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: Extraction, isolation and identification of bioactive compounds from plant extracts. Plants (Basel). 2017;6(4):42. https://doi.org/10.3390/plants6040042
  8. 8. Loescher CM, Morton DW, Razic S, Agatonovic-Kustrin S. High performance thin layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) for the qualitative and quantitative analysis of Calendula officinalis—advantages and limitations. J Pharm Biomed Anal. 2014;98:52–9. https://doi.org/10.1016/j.jpba.2014.04.023
  9. 9. Gallagher RT, Balogh MP, Davey P, Jackson MR, Sinclair I, Southern LJ. Combined electrospray ionization-atmospheric pressure chemical ionization source for use in high-throughput LC-MS applications. Anal Chem. 2003;75(4):973–7. https://doi.org/10.1021/ac0205457
  10. 10. Attimarad M, Ahmed KK, Aldhubaib BE, Harsha S. High-performance thin layer chromatography: A powerful analytical technique in pharmaceutical drug discovery. Pharm Methods. 2011;2(2):71–5. https://doi.org/10.4103/2229-4708.84436
  11. 11. Malviya R, Bansal V, Pal O, Sharma P. High performance liquid chromatography: A short review. J Glob Pharma Technol. 2010;2:22–6.
  12. 12. Kupnik K, Knez Ž, Primožič M, Leitgeb M. Separation of amino acids and peptides with supercritical fluids chromatography. Sep Purif Rev. 2022;52(1):58–74. https://doi.org/10.1080/15422119.2022.2038625
  13. 13. Profumo A, Gorroni A, Guarnieri SA, Mellerio GG, Cucca L, Merli D. GC-MS qualitative analysis of the volatile, semivolatile and volatilizable fractions of soil evidence for forensic application: A chemical fingerprinting. Talanta. 2020;219:121304. https://doi.org/10.1016/j.talanta.2020.121304
  14. 14. Konappa N, Udayashankar AC, Krishnamurthy S, Pradeep CK, Chowdappa S, Jogaiah S. GC–MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci Rep. 2020;10:16438. https://doi.org/10.1038/s41598-020-73442-0
  15. 15. Joy N, Jackson D, Coolong T. A validated GC-MS method for major terpenes quantification in hydrodistilled Cannabis sativa essential oil. Phytochem Anal. 2025. https://doi.org/10.1002/pca.3526
  16. 16. Sedikelo GK, Lenetha GG, Malebo NJ. Chromatography-mass spectrometry and chemical characteristics of Thymus zygis and Cymbopogon winterianus essential oils: Possible insect repellents. Sci Afr. 2022;15:e01095. https://doi.org/10.1016/j.sciaf.2022.e01095
  17. 17. Sharma A, Rai PK, Prasad S. GC–MS detection and determination of major volatile compounds in Brassica juncea L. leaves and seeds. Microchem J. 2018;138:488–93. https://doi.org/10.1016/j.microc.2018.01.015
  18. 18. Hird SJ, Lau BPY, Schuhmacher R, Krska R. Liquid chromatography-mass spectrometry for the determination of chemical contaminants in food. TrAC Trends Anal Chem. 2014;59:59–72. https://doi.org/10.1016/j.trac.2014.04.005
  19. 19. Kostiainen R, Kauppila TJ. Effect of eluent on the ionization process in liquid chromatography–mass spectrometry. J Chromatogr A. 2009;1216(4):685–99. https://doi.org/10.1016/j.chroma.2008.08.095
  20. 20. Mukherjee PK. LC–MS: a rapid technique for understanding the plant metabolite analysis. In: Mukherjee PK, editor. Quality control and evaluation of herbal drugs. Elsevier; 2019. p. 459–79. https://doi.org/10.1016/B978-0-12-813374-3.00011-9
  21. 21. Wilschefski SC, Baxter MR. Inductively coupled plasma mass spectrometry: introduction to analytical aspects. Clin Biochem Rev. 2019;40(3):115–33. https://doi.org/10.33176/AACB-19-00024
  22. 22. Stein S. Mass spectral reference libraries: an ever-expanding resource for chemical identification. Anal Chem. 2012;84(17):7274–82. https://doi.org/10.1021/ac301205z
  23. 23. Verma N. Advances and trends in analytical techniques in natural product research: challenges and future perspective. Indian J Nat Prod Resour. 2021;12(4):506–26.
  24. 24. van Wyk AS, Prinsloo G. Health, safety and quality concerns of plant-based traditional medicines and herbal remedies. S Afr J Bot. 2020;133:54–62. https://doi.org/10.1016/j.sajb.2020.06.031
  25. 25. Govindaraghavan S, Sucher NJ. Quality assessment of medicinal herbs and their extracts: criteria and prerequisites for consistent safety and efficacy of herbal medicines. Epilepsy Behav. 2015;52:363–71. https://doi.org/10.1016/j.yebeh.2015.03.004
  26. 26. Unnikrishnan R, Dev SA, Jayaraj R. Pitfalls and promises of raw drug identification techniques in the ayurvedic industry: an overview. 3 Biotech. 2020;10:497. https://doi.org/10.1007/s13205-020-02482-0
  27. 27. Nithaniyal S, Vassou SL, Poovitha S, Raju B, Parani M. Identification of species adulteration in traded medicinal plant raw drugs using DNA barcoding. Genome. 2017;60(2):139–46. https://doi.org/10.1139/gen-2015-0225
  28. 28. Kumar N, Kulsoom M, Shukla V, Kumar D, Priyanka, Kumar S, Tiwari J, Dwivedi N. Profiling of heavy metal and pesticide residues in medicinal plants. Environ Sci Pollut Res. 2018;25:29505–10. https://doi.org/10.1007/s11356-018-2993-z
  29. 29. Wang H, Chen Y, Wang L, Liu Q, Yang S, Wang C. Advancing herbal medicine: enhancing product quality and safety through robust quality control practices. Front Pharmacol. 2023;14:1265178. https://doi.org/10.3389/fphar.2023.1265178
  30. 30. Culley TM. Why vouchers matter in botanical research. Appl Plant Sci. 2013;1(11):1300076. https://doi.org/10.3732/apps.1300076
  31. 31. Klein-Junior LC, de Souza MR, Viaene J, Bresolin TMB, de Gasper AL, Henriques AT, et al. Quality control of herbal medicines: from traditional techniques to state-of-the-art approaches. Planta Med. 2021;87(12/13):964–88. https://doi.org/10.1055/a-1529-8339
  32. 32. Fan XH, Cheng YY, Ye ZL, Lin RC, Qian ZZ. Multiple chromatographic fingerprinting and its application to the quality control of herbal medicines. Anal Chim Acta. 2006;555(2):217–24. https://doi.org/10.1016/j.aca.2005.09.037
  33. 33. Pirsaheb M, Seifi H, Dawi EA, Gholami T, Badraldin SQ, Ryadh A, Salavati-Niasari M. Thermal analysis techniques in herbal medicine: a comprehensive review on unveiling integrity and quality for future perspectives. J Anal Appl Pyrolysis. 2023;175:106192. https://doi.org/10.1016/j.jaap.2023.106192
  34. 34. Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech. 2010;21(4):167–93
  35. 35. Lukas K, LeMaire PK. Differential scanning calorimetry: fundamental overview. Reson. 2009;14:807–17. https://doi.org/10.1007/s12045-009-0076-7
  36. 36. Odarchenko Y, Kaźmierczak-Bałata A, Bodzenta J, Ferrari E, Soloviev M. AC/DC thermal nano-analyzer compatible with bulk liquid measurements. Nanomaterials (Basel). 2022;12(21):3799. https://doi.org/10.3390/nano12213799
  37. 37. Haines PJ, Reading M, Wilburn FW. Differential thermal analysis and differential scanning calorimetry. In: Brown ME, editor. Handbook of thermal analysis and calorimetry. Vol. 1. Amsterdam: Elsevier Science B.V.; 1998. p. 279–361. https://doi.org/10.1016/S1573-4374(98)80008-3
  38. 38. Chen ZP, Sun J, Chen HX, Xiao YY, Liu D, Chen J, Cai H, Cai BC. Comparative pharmacokinetics and bioavailability studies of quercetin, kaempferol and isorhamnetin after oral administration of Ginkgo biloba extracts, Ginkgo biloba extract phospholipid complexes and Ginkgo biloba extract solid dispersions in rats. Fitoterapia. 2010;81(8):1045–52. https://doi.org/10.1016/j.fitote.2010.06.028
  39. 39. Ng HM, Saidi NM, Omar FS, Ramesh K, Ramesh S, Bashir S. Thermogravimetric analysis of polymers. In: Encyclopedia of Polymer Science and Technology. Hoboken: John Wiley & Sons, Inc.; 2002. https://doi.org/10.1002/0471440264.pst667
  40. 40. Lothenbach B, De Weerdt K. Thermogravimetric analysis. In: Scrivener K, Snellings R, Lothenbach B, editors. A practical guide to microstructural analysis of cementitious materials. Boca Raton: CRC Press; 2016
  41. 41. Cometa S, Busto F, Castellaneta A, Cochis A, Najmi Z, Rizzi R, et al. Development, analytical characterization and bioactivity evaluation of Boswellia serrata extract-layered double hydroxide hybrid composites. Molecules. 2023;28(18):6449. https://doi.org/10.3390/molecules28186449
  42. 42. Chiu J. Technique for simultaneous thermogravimetric, derivative thermogravimetric, differential thermal and electrothermal analyses. Anal Chem. 1967;39(8):861–7. https://doi.org/10.1021/ac60252a042
  43. 43. Hoffman R, Pan WP. Measuring ΔH using TG—DTA and incorporating mass change into the result. Thermochim Acta. 1991;192:135–46. https://doi.org/10.1016/0040-6031(91)87155-P
  44. 44. Lorenzo ND, Santos OVD, Lannes SCDS. Fatty acid composition, cardiovascular functionality, thermogravimetric-differential, calorimetric and spectroscopic behavior of pequi oil (Caryocar villosum (Alb.) Pers.). Food Sci Technol. 2021;41(2):524–9. https://doi.org/10.1590/fst.16420
  45. 45. Saba N, Jawaid M, Alothman OY, Paridah MT. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater. 2016;106:149–59. https://doi.org/10.1016/j.conbuildmat.2015.12.075
  46. 46. Bashir MA. Use of dynamic mechanical analysis (DMA) for characterizing interfacial interactions in filled polymers. Solids. 2021;2(1):108–20. https://doi.org/10.3390/solids2010006
  47. 47. Sathees Kumar S, Mugesh Raja V, Sudhagar S, Kanagaraj G, Vignesh V, Manimaran P. Static, dynamic mechanical and thermal characteristics of Luffa, Morinda tinctoria and Myrobalan reinforced epoxy hybrid biocomposites. Fibers Polym. 2023;24:2093–105. https://doi.org/10.1007/s12221-023-00196-7
  48. 48. Bansal A, Chhabra V, Rawal RK, Sharma S. Chemometrics: a new scenario in herbal drug standardization. J Pharm Anal. 2014;4(4):223–33. https://doi.org/10.1016/j.jpha.2013.12.001
  49. 49. El-Gindy A, Hadad GM. Chemometrics in pharmaceutical analysis: an introduction, review and future perspectives. J AOAC Int. 2012;95(3):609–23. https://doi.org/10.5740/jaoacint.SGE_El-Gindy
  50. 50. Vyas A, Jain V, Sahu U, Kumar N, Joshi N. HPTLC method development of herbal drugs and its validation: an overview. Res J Pharm Technol. 2023;16(8):3964–6. https://doi.org/10.52711/0974-360X.2023.00652
  51. 51. Dharmamoorthy G, Saiteja K, Keerthana J, Dinesh L, Ganesh A, Balaji A. An overview on high-performance thin-layer chromatography (HPTLC). Asian J Pharm. 2023;17(1):5–11. https://doi.org/10.22377/ajp.v17i1
  52. 52. Pei W, Huang Y, Qu Y, Cui X, Zhou L, Yang H, et al. A strategy for quality evaluation of complex herbal preparations based on multi-color scale and efficacy-oriented high-performance thin-layer chromatography characteristic fingerprint combined with chemometric method: Sanwujiao Pills as an example. Heliyon. 2023;9(11):e22098. https://doi.org/10.1016/j.heliyon.2023.e22098
  53. 53. Balkrishna A, Sharma P, Joshi M, Srivastava J, Varshney A. Development and validation of a rapid high-performance thin-layer chromatographic method for quantification of gallic acid, cinnamic acid, piperine, eugenol and glycyrrhizin in Divya-Swasari-Vati, an ayurvedic medicine for respiratory ailments. J Sep Sci. 2021;44(16):3146–57. https://doi.org/10.1002/jssc.202100096
  54. 54. Patel MN, Nandpal MN, Patel AJ, Raval MA, Patel SG. Development and validation of a green stability-indicating HPTLC method for estimation of curcumin, gallic acid and ursolic acid from polyherbal formulation Jatyadi Taila. J AOAC Int. 2023;106(4):979–91. https://doi.org/10.1093/jaoacint/qsac147
  55. 55. Kaur P, Gupta RC, Dey A, Malik T, Pandey DK. Validation and quantification of major biomarkers in ‘Mahasudarshan Churna’—an Ayurvedic polyherbal formulation through high-performance thin-layer chromatography. BMC Complement Med Ther. 2020;20:184. https://doi.org/10.1186/s12906-020-02970-z
  56. 56. Patel LJ, Raval MA, Patel SG, Patel AJ. Development and validation of stability indicating high-performance thin-layer chromatographic (HPTLC) method for quantification of asiaticoside from Centella asiatica L. and its marketed formulation. J AOAC Int. 2019;102(4):1014–20. https://doi.org/10.5740/jaoacint.18-0381
  57. 57. Govindarajan R, Vyas T, Pushpangadan P. High-performance liquid chromatography (HPLC) as a tool for standardization of complex herbal drugs. J AOAC Int. 2019;102(4):986–92. https://doi.org/10.5740/jaoacint.18-0378
  58. 58. Xu Y, Wang Y, Yue X, Yang H, Lv P, Bao H. Application of a new validated HPLC-DAD method for simultaneous determination of ten active components in Xiedu San. Pak J Pharm Sci. 2021;34(6):2235–45
  59. 59. Lopes AJF, Tsochatzis ED, Emons H, Hoekstra E. Development and validation of an HPLC method with fluorescence detection for the determination of fluorescent whitening agents migrating from plastic beverage cups. Food Addit Contam Part A. 2018;35(7):1438–46. https://doi.org/10.1080/19440049.2018.1459053
  60. 60. Zheng X, Chen S, Zheng M, Peng J, He X, Han Y, et al. Development of the HPLC–ELSD method for the determination of phytochelatins and glutathione in Perilla frutescens under cadmium stress conditions. R Soc Open Sci. 2018;5(171659). https://doi.org/10.1098/rsos.171659
  61. 61. Rodell R, Tsao N, Ganguly A, Mosammaparast N. Use of High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) to Quantify Modified Nucleosides. In: Mosammaparast N, editor. DNA Damage Responses. Methods Mol Biol. 2022;2444:125–40. https://doi.org/10.1007/978-1-0716-2063-2_8
  62. 62. Langer C, Süss R. HPLC-DAD-CAD-based approach for the simultaneous analysis of hydrophobic drugs and lipid compounds in liposomes and for cyclodextrin/drug inclusion complexes. J Pharm Biomed Anal. 2021;201:114120. https://doi.org/10.1016/j.jpba.2021.114120
  63. 63. Mishra A, Mishra AK, Tiwari OP, Jha S. HPLC analysis and standardization of Brahmi vati - An Ayurvedic poly-herbal formulation. J Young Pharm. 2013;5(3):77–82. https://doi.org/10.1016/j.jyp.2013.09.001
  64. 64. Kardani K, Gurav N, Solanki B, Patel P, Patel B. RP-HPLC method development and validation of gallic acid in polyherbal tablet formulation. J Appl Pharm Sci. 2013;3(5):37–42
  65. 65. Kamal YT, Singh M, Tamboli ET, Parveen R, Zaidi SMA, Ahmad S. Rapid RP-HPLC method for the quantification of glabridin in crude drug and in polyherbal formulation. J Chromatogr Sci. 2012;50(9):779–84. https://doi.org/10.1093/chromsci/bms063
  66. 66. Meena AK, Rekha P, Perumal A, Gokul M, Swathi KN, Ilavarasan R. Estimation of Withaferin-A by HPLC and standardization of the Ashwagandhadi lehyam formulation. Heliyon. 2021;7(2):e06116. https://doi.org/10.1016/j.heliyon.2021.e06116
  67. 67. Abraham A, Mathew L, Samuel S. HPLC analysis of Pathyashadangam kwath, a classical Ayurvedic polyherbal formulation. Mater Today Proc. 2020;25(2):115–21. https://doi.org/10.1016/j.matpr.2019.12.165
  68. 68. Want EJ, Metz TO. MS Based Metabonomics. In: Lindon JC, Tranter GE, Koppenaal DW, editors. Encyclopedia of Spectroscopy and Spectrometry. 3rd ed. Academic Press; 2017. p. 926–35. https://doi.org/10.1016/B978-0-12-803224-4.00030-3
  69. 69. Martínez Bueno MJ, Agüera A, Gómez MJ, Hernando MD, García-Reyes JF, Fernández-Alba AR. Application of liquid chromatography/quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater. Anal Chem. 2007;79(24):9372–84. https://doi.org/10.1021/ac0715672
  70. 70. Zhou JL, Qi LW, Li P. Herbal medicine analysis by liquid chromatography/time-of-flight mass spectrometry. J Chromatogr A. 2009;1216(44):7582–94. https://doi.org/10.1016/j.chroma.2009.05.054
  71. 71. Chen XF, Wu HT, Tan GG, Zhu ZY, Chai YF. Liquid chromatography coupled with time-of-flight and ion trap mass spectrometry for qualitative analysis of herbal medicines. J Pharm Anal. 2011;1(4):235–45. https://doi.org/10.1016/j.jpha.2011.09.008
  72. 72. Aslam L, Kaur R, Hussain S, Kapoor N, Mahajan R. LC-MS/MS identification and structural characterization of isolated cyclotides from precursor sequences of Viola odorata L. petiole tissue using computational approach. J Biosci. 2022;47:50
  73. 73. Lippens JL, Egea PF, Spahr C, Vaish A, Keener JE, Marty MT, et al. Rapid LC-MS method for accurate molecular weight determination of membrane and hydrophobic proteins. Anal Chem. 2018;90(22):13616–23. https://doi.org/10.1021/acs.analchem.8b03843
  74. 74. Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, et al. UPLC/MS E; a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun Mass Spectrom. 2006;20(13):1989–94. https://doi.org/10.1002/rcm.2550
  75. 75. Ammann AA, Macikova P, Groh KJ, Schirmer K, Suter MJF. LC-MS/MS determination of potential endocrine disruptors of cortico signalling in rivers and wastewaters. Anal Bioanal Chem. 2014;406:7653–65. https://doi.org/10.1007/s00216-014-8206-9
  76. 76. Thakkar AP, Vora A, Kaur G, Akhtar J. An LC-MS/MS method for the quantification of major biomarkers in “Majoon-e-Nisyan”—an Unani polyherbal formulation. J Anal Chem. 2023;78:1549–56. https://doi.org/10.1134/S1061934823110102
  77. 77. Balkrishna A, Ranjan R, Sakat SS, Sharma VK, Shukla R, Joshi K, et al. Evaluation of polyherbal ayurvedic formulation ‘Peedantak Vati’ for anti-inflammatory and analgesic properties. J Ethnopharmacol. 2019;235:361–74. https://doi.org/10.1016/j.jep.2019.01.028
  78. 78. Almalki A, Zaher A, Simithy J, Keller W, Tripp M, Calderón A. LC-MS-based quality assessment of a traditional Chinese medicine YANG XIN formulation. Planta Med. 2016;82(13):1208–16. https://doi.org/10.1055/s-0042-106170
  79. 79. Fu S, Du L, Yuan Y, He X. Quality evaluation of Andrographis paniculata capsules based on rapid and accurate LC–ESI–MS/MS assay of three diterpenoids. J Chromatogr Sci. 2019;57(8):708–14. https://doi.org/10.1093/chromsci/bmz044
  80. 80. Seo CS, Shin HK. Quality assessment of traditional herbal formula, Hyeonggaeyeongyo-tang through simultaneous determination of twenty marker components by HPLC–PDA and LC–MS/MS. Saudi Pharm J. 2020;28(4):427–39. https://doi.org/10.1016/j.jsps.2020.02.003
  81. 81. Kännaste A, Copolovici L, Niinemets Ü. Gas chromatography–mass spectrometry method for determination of biogenic volatile organic compounds emitted by plants. In: Rodríguez-Concepción M, editor. Plant Isoprenoids. Methods Mol Biol. 2014;1153:161–9. https://doi.org/10.1007/978-1-4939-0606-2_11
  82. 82. Creative Proteomics. Gas chromatography VS liquid chromatography [Internet]. 2024 [cited 2024 Dec 11]. https://www.creative-proteomics.com/resource/gas-chromatography-vs-liquid-chromatography.htm
  83. 83. Coskun O. Separation techniques: Chromatography. North Clin Istanbul. 2016;3(2):156–60. https://doi.org/10.14744/nci.2016.32757
  84. 84. Grayson MA. A history of gas chromatography mass spectrometry (GC/MS). In: Gross ML, Caprioli RM, editors. The encyclopedia of mass spectrometry. Amsterdam: Elsevier; 2016. p. 152–8. https://doi.org/10.1016/B978-0-08-043848-1.00020-1
  85. 85. Olivia NU, Goodness UC, Obinna OM. Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Futur J Pharm Sci. 2021;7:59. https://doi.org/10.1186/s43094-021-00208-4
  86. 86. George UU, Mbong EO, Bolarinwa KA, Abiaobo NO. Ethno-botanical verification and phytochemical profile of ethanolic leaves extract of two medicinal plants (Phragmenthera capitata and Lantana camara) used in Nigeria using GC-MS technique. Acta Biol Forum. 2023;2(3):1–7
  87. 87. Feng H, Li S, Hu Y, Zeng X, Qiu P, Li Y, et al. Quality assessment of Succus Bambusae oral liquids based on gas chromatography/mass spectrometry fingerprints and chemometrics. Rapid Commun Mass Spectrom. 2021;35(24):e9200. https://doi.org/10.1002/rcm.9200
  88. 88. Devasvaran K, Baharom NH, Chong HW, Ramli RN, Chiu HI, Lee CK, et al. Quality assessment of Clinacanthus nutans leaf extracts by GC–MS-based metabolomics. Curr Sci. 2020;119(4):641–8. http://dx.doi.org/10.18520/cs/v119/i4/641-648
  89. 89. Kotteswari M, Rao MRK, Kumar S, Prabhu K, Sundaram RL, Dinakar S. GC-MS analysis of one Ayurvedic preparation ‘Aswagandharishtam.’ Biomed Pharmacol J. 2018;11(2):1061–72. https://dx.doi.org/10.13005/bpj/1467
  90. 90. Zahiruddin S, Parveen A, Khan W, Ibrahim M, Akhtar J, Khan AA, et al. Quality control and stability testing of Arq formulations of Unani Pharmacopeia of India using HPTLC and GC-MS. J AOAC Int. 2020;103(3):699–704. https://doi.org/10.5740/jaoacint.19-0230
  91. 91. Ahmad W, Parveen R, Mujeeb M, Zaidi SMA. Comparative fingerprint profiling of Unani polyherbomineral (Safoof-e-Pathar Phori) formulation by HPTLC, HPLC and GC-MS. J AOAC Int. 2020;103(3):659–68. https://doi.org/10.5740/jaoacint.19-0286
  92. 92. Chen M, Wen SS, Wang R, Ren QX, Guo CW, Li P, et al. Advanced development of supercritical fluid chromatography in herbal medicine analysis. Molecules. 2022;27(13):4159. https://doi.org/10.3390/molecules27134159
  93. 93. Yuan H, Olesik SV, West C. Supercritical fluid chromatography. In: Encyclopedia of Analytical Chemistry. Chichester: John Wiley & Sons, Ltd; 2019. p. 1–19. https://doi.org/10.1002/9780470027318.a5917.pub2
  94. 94. Liu TT, Cheong LZ, Man QQ, Zheng X, Zhang J, Song S. Simultaneous profiling of vitamin D metabolites in serum by supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS). J Chromatogr B. 2019;1120:16–23. https://doi.org/10.1016/j.jchromb.2019.04.050
  95. 95. Langeder J, Grienke U. A supercritical fluid workflow for the quality assessment of herbal drugs and commercial preparations from Rhodiola rosea. Phytochem Anal. 2021;32(6):982–91. https://doi.org/10.1002/pca.3040
  96. 96. Nie L, Dai Z, Ma S. Stereospecific assay of (R)- and (S)-Goitrin in commercial formulation of Radix Isatidis by reversed phase high-performance liquid chromatography. J Anal Methods Chem. 2017;2017:2810565. https://doi.org/10.1155/2017/2810565
  97. 97. Ciftci ON, Cahyadi J, Guigard SE, Saldaña MDA. Optimization of artemisinin extraction from Artemisia annua L. with supercritical carbon dioxide + ethanol using response surface methodology. Electrophoresis. 2018;39(15):1926–33. https://doi.org/10.1002/elps.201800084
  98. 98. Mazarakioti EC, Zotos A, Thomatou AA, Kontogeorgos A, Patakas A, Ladavos A. Inductively coupled plasma-mass spectrometry (ICP-MS), a useful tool in authenticity of agricultural products’ and foods’ origin. Foods. 2022;11(22):3705. https://doi.org/10.3390/foods11223705
  99. 99. Sharp BL. Pneumatic nebulisers and spray chambers for inductively coupled plasma spectrometry. A review. Part 1. Nebulisers. J Anal At Spectrom. 1988;3(5):613–52. https://doi.org/10.1039/JA9880300613
  100. 100. Pupyshev AA, Semenova EV. Formation of doubly charged atomic ions in the inductively coupled plasma. Spectrochim Acta B At Spectrosc. 2001;56(12):2397–418. https://doi.org/10.1016/S0584-8547(01)00301-9
  101. 101. Agilent. An introduction to the principles of Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) [Internet]. Santa Clara (CA): Agilent Technologies, Inc.; 2024 [cited 2024 Dec 11]. https://www.agilent.com/en/product/atomic-spectroscopy/inductively-coupled-plasma-mass-spectrometry-icp-ms/what-is-icp-ms-icp-ms-faqs
  102. 102. Luo L, Wang B, Jiang J, Fitzgerald M, Huang Q, Yu Z, et al. Heavy metal contaminations in herbal medicines: determination, comprehensive risk assessments and solutions. Front Pharmacol. 2021;11:595335. https://doi.org/10.3389/fphar.2020.595335
  103. 103. Nie LX, Zha YF, Zuo TT, Jin HY, Yu JD, Dai Z, et al. [Determination and risk assessment of heavy metals and harmful elements residues in Niuhuang Qingwei Pills based on ICP-MS]. Zhongguo Zhong Yao Za Zhi. 2019;44(1):82–7. https://doi.org/10.19540/j.cnki.cjcmm.20181108.002
  104. 104. Yao JJ, Kong DD, Luo JY, Qin WJ, Qin XM, Fan ZW, et al. [Safety evaluation of heavy metals contaminated Astragalus membranaceus using health risk assessment model]. Zhongguo Zhong Yao Za Zhi. 2019;44(14):3094–9. https://doi.org/10.19540/j.cnki.cjcmm.20190517.201
  105. 105. Abdalla AA, Smith RE. Determination of mercury in Ayurvedic dietary supplements that are not Rasa Shastra using the Hydra-C direct mercury analyzer. Int J Anal Chem. 2013;2013:1–4. https://doi.org/10.1155/2013/628397
  106. 106. Fu K, Song Y, Zhang D, Xu M, Wu R, Xiong X, et al. Determination of 18 trace elements in 10 batches of the Tibetan medicine Qishiwei Zhenzhu Pills by direct inductively coupled plasma-mass spectrometry. Evid Based Complement Alternat Med. 2022;2022:8548378. https://doi.org/10.1155/2022/8548378
  107. 107. Kumar R, Samajdar S, Mazumder R, Chandra A. Formulation, standardization and evaluation of Vaiśvānaracūrṇa tablet. Ancient Sci Life. 2018;38(2):59–67. https://doi.org/10.4103/asl.asl_97_22

Downloads

Download data is not yet available.